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I. Résumé 

L’état de l’art dans le domaine a montré qu’il y avait un lien étroit entre les cycles du carbone 

terrestre et aquatique : en effet, une partie du carbone fixé par photosynthèse (productivité 

primaire brute) est transférée vers les milieux aquatiques continentaux pour être ensuite 

transporté latéralement sous forme de carbone organique dissous (COD), de carbone organique 

particulaire (COP), de carbone inorganique dissous (CID). Durant ce transfert latéral, le 

carbone peut être minéralisé puis réémis vers l’atmosphère sous forme de CO2 ou enfoui dans 

les sédiments. Cependant, nous sommes encore loin de bien comprendre et surtout de quantifier 

les variations temporelles et spatiales des flux de carbones à l’échelle régionale et globale, 

même si les études faites à l’échelle locale nous montrent qu’elles sont importantes. Au cours 

de cette thèse, nous nous sommes focalisés sur 3 grandes régions pour lesquelles la 

connaissance des flux de carbone le long du continuum aquatique reliant les écosystèmes 

terrestres aux océans étaient encore très parcellaire. 

Pour la région boréale, un modèle empirique a été développé afin de produire les premières 

cartes à haute résolution de pCO2 et d’émission de CO2 pour les lacs boréaux. Les résultats du 

modèle nous ont permis de contraindre les émissions totales de CO2 pour les lacs boréaux à 

189 (74-347) Tg C an-1, soit plus du double des estimations précédentes. Ce modèle a ensuite 

été couplé aux projections de production primaire brute terrestre et de précipitations afin de 

prédire les émissions de CO2 pour ces lacs pour différents scénarios de changement climatique 

et d’occupation des sols. Les résultats montrent que même en prenant le scénario le plus 

conservatif, les émissions de CO2 des lacs boréaux augmenteraient de 38% d’ici 2100. 

Pour le bassin de l’Amazone, le modèle d’écosystème terrestre ORCHILEAK, paramétré par 

de nouvelles donnés de forçage des zones humides, a été utilisé pour démontrer que l’export 

de carbone terrestre vers les réseaux fluviaux ainsi que les émissions de CO2 ont une très grande 
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variabilité interannuelle : émissions élevées lors des années à forte précipitation et basses lors 

des années sèches. Cependant, la productivité nette de l’écosystème (PNE) Amazone et la 

fixation nette de carbone à l’échelle du bassin sont plus élevées lors des années humides, en 

partie dû au taux de décomposition de carbone organique réduit lorsque les sols sont saturés en 

eau. De plus, les résultats montrent que les flux de carbone des systèmes aquatiques ont une 

plus grande variabilité que les flux terrestres, ce qui atténue considérablement la variabilité 

interannuelle de la PNE du bassin de l'Amazone. 

Pour finir, nous avons appliqué ORCHILEAK au bassin du Congo afin d’étudier l’évolution 

intégrée des flux de carbone terrestres et aquatiques de 1861 à nos jours, ainsi que de projeter 

leur devenir au cours du 21eme siècle selon les scénarios de changement climatiques et de 

changement d’occupation des sols. Nous avons montré que les flux terrestres et aquatiques 

augmentent de façon significative durant la période historique et dans le futur, cette 

augmentation étant largement induite par l’augmentation du CO2 atmosphérique et, dans une 

moindre mesure, par le changement climatique. En particulier, la proportion de la productivité 

primaire brute terrestre exportée vers le continuum aquatique passe de 3% en 1861 à 5% en 

2099. Ce résultat contraste avec ceux obtenu pour la région boréale où cette proportion reste 

relativement constante et pour l’Amazone où c’est une baisse qui est en fait prédite. Ces 

différences s’expliquent par des trajectoires de changement climatique distinctes pour ces 3 

régions.
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Previous research has shown a close relationship between the terrestrial and aquatic carbon (C) 

cycles, namely that part of the C fixed via terrestrial net primary production (NPP) is exported 

to inland waters. In turn, it has been demonstrated that once in the freshwater system C can not 

only be transported laterally as dissolved organic carbon (DOC), particulate organic carbon 

(POC) and dissolved inorganic carbon (DIC) but is also mineralized and evaded back to the 

atmosphere as CO2, or buried in sediments. A number of hotspot areas of aquatic CO2 evasion 

have been identified but there are considerable gaps in our knowledge, particularly associated 

with understanding and accounting for the temporal and spatial variation of aquatic C fluxes at 

regional to global scales, which we know from local scale studies, to be substantial. In this 

thesis, three important regional hotspots of LOAC activity were identified, where significant 

gaps in our understanding remain. 

For the boreal region, an empirical model is developed to produce the first high resolution maps 

of boreal lake pCO2 and CO2 evasion, providing a new estimate for total evasion from boreal 

lakes of 189 (74–347) Tg C yr-1, which is more than double the previous best estimate. The 

model is also used along with future projections of terrestrial NPP and precipitation, to predict 

future lake CO2 evasion under future climate change and land-use scenarios, and it is found 

that even under the most conservative scenario CO2 evasion from boreal lakes may increase 

38% by 2100.  

For the Amazon Basin, the ORCHILEAK land surface model driven by a newly developed 

wetland forcing file, is used to show that the export of C to and CO2 evasion from inland waters 

is highly interannually variable; greatest during wet years and lowest during droughts. 

However, at the same time overall net ecosystem productivity (NEP) and C sequestration is 

highest during wet years, partly due to reduced decomposition rates in water-logged floodplain 

soils. Furthermore, it is shown that aquatic C fluxes display greater variation than terrestrial C 
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fluxes, and that this variation significantly dampens the interannual variability in NEP of the 

Amazon basin by moderating terrestrial variation.   

Finally, ORCHILEAK is applied to the Congo Basin to investigate the evolution of the 

integrated aquatic and terrestrial C fluxes from 1861 to the present day, and in turn to 2099 

under a future climate and land-use scenario. It is shown that terrestrial and aquatic fluxes 

increase substantially over time, both over the historical period and into the future, and that 

these increases are largely driven by atmospheric CO2. The proportion of terrestrial NPP lost 

to the LOAC also rises from 3% in 1861 to 5% in 2099 and this trend is driven not only by 

atmospheric CO2 but also by climate change. This is in contrast to the boreal region where the 

proportion of NPP exported to inland waters is predicted to remain relatively constant, and to 

the Amazon, where a decrease has been predicted, due to differences in projected climate 

change.  
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1. Introduction 

1.1. The role of the land-ocean continuum in the global carbon cycle 

In the last few decades, the global carbon (C) cycle has received an increasing amount of 

attention in the scientific research community, largely focused on its role in the climate-carbon 

cycle feedback loop. Approximately 50% of anthropogenic CO2 emissions are absorbed by the 

oceans and terrestrial ecosystems of Earth (Le Quéré at al., 2018, Fig. 1), however research has 

long shown that this sink is highly sensitive to both atmospheric CO2 levels and climate change 

(Cox et al., 2000; Friedlingstein et al., 2006). Both the ocean and terrestrial C sinks have 

increased over the 20th and 21st century (Le Quéré at al., 2018). Moreover, while the ocean 

sink shows limited fluctuation, the strength of the land sink exhibits considerable interannual 

to decadal variation (Fig. 2) and current estimates of the global land C sink include a substantial 

uncertainty range (Fig. 1). Until 2017, the Global Carbon Project (GCP) estimated the land 

sink indirectly as the residual of the other terms in the following equation: 

SLAND = EFF + ELUC − (GATM + SOCEAN)                                                                                  (1) 

Where SLAND is the residual land sink, EFF is CO2 emissions from fossil fuels and industry, ELUC 

is emissions from land-use change, GATM is the atmospheric CO2 growth rate and SOCEAN is the 

ocean sink.  
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Chapter 1 Figure 1: Breakdown of the main sources and sinks within the anthropogenic global 

C cycle, as estimated in the 2018 Global Carbon Budget (Le Quéré at al., 2018b). Units are Pg C 

yr-1. 

With this approach, the uncertainty in the land sink is by definition the sum of the uncertainty 

associated with the right-hand terms of equation 1 and is representative of the various biases 

and missing processes of the other terms. Following this, the GCP estimated the land sink at 

3.1 ± 0.9 (1 σ) Pg C yr−1 for the decade 2006-2015 (Le Quéré at al., 2016). In 2017, the GCP 

began calculating the land sink directly from the multi-model mean output of 15 dynamic 

global vegetation models (DGVMs). Interestingly, the new mean annual land sink of 3.2 Pg C 

yr−1, as well as the uncertainty range calculated as the mean standard deviation (SD) of the land 

sink (1959-2016) of 0.8 (1 σ) Pg C yr−1 are almost identical to those estimated using budget 

closure (Le Quéré at al., 2018a). For the latest budget, 2018 (Le Quéré at al., 2018b), the land 

sink remains unchanged at 3.2 (Fig. 1) ±0.8 (1 σ) Pg C yr-1 (uncertainty of 25%) and substantial 

interannual to decadal variation remains (Fig. 2). This is larger than the uncertainty associated 

with fossil fuel emissions of just 5% (9.4±0.5 Pg C yr-1), and that associated with the ocean 

sink of 21% (2.4±0.5 Pg C yr-1) (Le Quéré at al., 2018 b). Moreover, the overall budget is not 

closed with an imbalance (difference between the estimated C sources and C sinks) of 5% or 

0.5 Pg C yr-1 globally (Fig. 1, Le Quéré at a`l., 2018 b).  



Introduction 

20 

 

 

Chapter 1 Figure 2: Interannual variation (1980-2017) in the global land C sink as estimated in 

the 2018 Global C Budget (Le Quéré at al., 2018 b). Units are Pg C yr-1. 

Moreover, bottom-up data driven approaches can give a wildly different picture of the global 

C balance. Zscheischler et al. (2017) used a data-driven approach to synthesize a range of 

estimates of the net C exchange (NCE, as defined in Zscheischler et al., 2017) between the 

surface (land, ocean, and coastal areas) and the atmosphere. Using this approach, they 

calculated a net present-day (2001-2010) transfer from the atmosphere to the surface (or surface 

sink) of −5.4 ± 2.0 Pg C yr−1. Consider that over the same period (2001-2010), the GCP (Le 

Quéré et al., 2015) estimate the atmospheric growth rate (GATM, equation 1) to be 4.3 ± 0.1 Pg 

C yr−1, a disagreement of almost 10 Pg C yr−1 and it becomes abundantly clear that the terrestrial 

C cycle is a research area that requires further attention.  

The freshwater system or the land-ocean aquatic continuum (LOAC) is one aspect of the land 

carbon (C) cycle which has been neglected until relatively recently and is still not integrated 

into the DGVMs used to assess the SLAND  (equation 1) term of the global C budget (Le Quéré 

at al., 2018 b).  Therefore, a major knowledge gap lies in our understanding of how the aquatic 

C cycle affects the wider land C budget and its interannual variation (Fig. 2). Historically, the 

LOAC was generally considered as a passive conduit through which carbon would pass from 

the terrestrial system to the ocean (Cole et al., 2007). Over the last decade a new paradigm has 

been established which places the LOAC as a much more active component where C can not 

only be transported laterally as dissolved organic carbon (DOC), particulate organic carbon 
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(POC) and dissolved inorganic carbon (DIC) but also mineralized and evaded back to the 

atmosphere as CO2, or buried in lakes and floodplains (Cole et al., 2007; Battin et al., 2009; 

Regnier et al., 2013).    

In 2013 Regnier et al. published a landmark paper on the LOAC and its perturbation, and this 

is still arguably the most comprehensive overview providing a global quantification of the 

various LOAC components, as well as an estimate of their uncertainties. They estimated that 

the input of C into inland waters is 2.8 Pg C yr-1 (Regnier et al., 2013 based on various sources 

such as Battin et al., 2009; Tranvik et al., 2009) and provided a breakdown of four sub-

components of this flux. By far the largest is soil derived C in the form of DOC, POC or 

dissolved CO2 which adds up to 1.9 Pg C yr-1 and was calculated by subtracting the proceeding 

three fluxes from the total input to inland waters (2.8 Pg C yr-1). The second component is 

chemical weathering of carbonate and silicate rocks and is responsible for an input of around 

0.5 Pg C yr-1 of largely dissolved inorganic C into inland waters (Regnier et al., 2013 based on 

various sources such as Gaillardet et al., 1999; Amiotte Suchet et al., 2003; Hartmann et al., 

2009), with the majority of this total coming from the removal of atmospheric CO2 in 

weathering reactions and the rest from the C contained in rocks. It is important to note that 

most of the C derived from weathering is indirect, namely that the majority of CO2 removed 

from the atmosphere is soil derived, having firstly undergone photosynthetic fixation.  The 

third component is C contained within sewage water, estimated at approximately 0.1 Pg C yr-1 

Regnier et al., 2013 based on Ver et al., 1999 and Mackenzie et al., 2001). The fourth and final 

flux is photosynthetic fixation within inland waters and Regnier et al. (2013) estimate that 

around 20% of the C buried in and exported from inland waters is autochthonous, amounting 

to approximately 0.3 Pg C yr-1. 

Once in the LOAC, C can be transported further downstream as DOC, POC or DIC, 

mineralized and evaded back to the atmosphere as CO2, or buried in lake and floodplain 
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sediments and there is consensus that CO2 evasion from the water surface is the greatest flux. 

Regnier et al. (2013) put this flux conservatively at 1.1 Pg C yr-1, but values range widely from 

around 1 to 3 Pg C yr-1 (Cole et al., 2007; Tranvik et al., 2009; Raymond et al., 2013; Drake et 

al., 2017) and estimates of its magnitude have gradually increased over time with new 

publications on the topic (Drake et al., 2017). Drake et al. (2017) argue that CO2 evasion from 

inland waters could be as high as 3.9 Pg C yr-1.  Burial within lakes and reservoirs is also highly 

uncertain with estimates ranging from 0.2 to 0.6 Pg C yr-1 (Mendonça et al., 2017; Tranvik et 

al., 2009). Mendonça et al., (2017) combined observations with statistical modelling to produce 

their estimate of 0.15 Pg C yr-1 while the value of 0.6 from Tranvik et al. (2009) was based on 

a synthesis of the literature in combination with some simple assumptions to upscale to the 

entire globe.  Of the 0.15 Pg C yr-1, Mendonça et al., 2017) estimate that 0.06 is buried in 

reservoirs and this is close to the model-based estimate of 0.05 Pg C yr-1 calculated by Maavara 

et al. (2017) for the year 2030. 

Moreover, a largely unaccounted for term is the burial of C on floodplains which could 

represent a non-negligible C sink (D’Elia et al., 2017).  Export to the coast is arguably the best 

constrained LOAC flux and several estimates converge on a value of approximately 0.9 Pg C 

yr-1 (Cole et al., 2007; Tranvik et al., 2009) although estimates also depend on whether estuaries 

and coastal vegetation are accounted for or not (Cai, 2011; Bauer et al., 2013).   

There are a number of reasons behind the large disagreements and uncertainties associated with 

inland water C fluxes, not least with CO2 evasion as the largest component. Firstly, observed 

databases are very limited, both spatially and temporally. There are particular data gaps in 

regions such as the tropics and Siberia (Raymond et al., 2013; Lauerwald et al., 2015) while 

most fluxes are not sampled at sufficiently high frequencies to represent the true temporal 

variation; there are multiple examples of inland waters changing from a CO2 source to a sink 

over the course of a single day (Reiman & Xu 2018; Xu et al., 2019). Secondly, the vast 
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majority of both pCO2 and CO2 flux “observations” are indirectly measured, resulting in 

substantial limitations. pCO2 is typically calculated from alkalinity, pH, and water temperature, 

a method which is highly error prone in low-pH and low-alkalinity waters (Abril et al., 2015) 

and can lead to an overestimation of pCO2 (Wallin et al., 2014). Moreover, calculating CO2 

evasion in turn relies on an empirical estimation of the gas exchange velocity k for which 

multiple different empirical parameterizations exist (Cole and Caraco, 1998; Read et al., 2012; 

Vachon & Prairie., 2013), and this is usually in addition to the uncertainty associated with 

pCO2.  

Another important research question, and addressed for the first time in the paper of Regnier 

et al. (2013), is how much these LOAC fluxes have been perturbed historically by 

anthropogenic divers, and it follows to ask how much they are likely to be perturbed under 

future climate change and land use change scenarios. Globally, Regnier et al. (2013) estimated 

that anthropogenic perturbation has increased the transport of C to the freshwater system by 

around 1 Pg C yr-1 and CO2 evasion from inland waters by 0.5 Pg C yr-1 since pre-industrial 

times. Thus, an added layer of complexity is isolating the natural temporal and spatial variation 

from the anthropogenic perturbation along the LOAC, and indeed the budget of the GCP does 

not incorporate this perturbation as C transfer and transformation along the LOAC is not 

represented in the DGVMs that they used to estimate the SLAND (equation 1) term. They 

acknowledge that it will affect the partitioning of C between the land and ocean sink but argue 

that the other terms would remain unaffected (Le Quéré at al., 2018b). In conclusion, the LOAC 

has been identified as a significant knowledge gap by the GCP (Le Quéré et al., 2015). 
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1.2. Estimating the spatial variation in LOAC fluxes using upscaling and 

empirical approaches 

In order to better constrain the contribution of the LOAC to the global C cycle, we need to be 

able to understand and quantify the spatial and temporal variation of inland water C fluxes. In 

2013, Raymond et al. (2013) published the first attempt to estimate the spatial variation in 

aquatic CO2 evasion globally. They used a relatively simple upscaling approach combining a 

limited dataset of indirectly observed pCO2 data with some empirical modelling, to estimate 

CO2 evasion from rivers and lakes at the relatively course scale of COSCAT catchments 

(Meybeck et al., 2006, Fig. 3). Based on this method, they estimated that globally, rivers evade 

1.8 (1.55-2.05) Pg C yr-1 (Fig. 3 a) to the atmosphere while lakes evade 0.32 (0.06-0.84) Pg C 

yr-1 (Fig. 3 b). Their results suggested some hotspot areas of CO2 evasion from inland waters; 

tropical, sub-tropical and to a lesser extent, temperate regions dominated the flux from rivers 

(Fig. 3 a), while high latitudes dominated the flux from lakes (Fig. 3 b). Somewhat 

unsurprisingly, these hotspot areas coincide with water surface area (Fig. 4), rainfall and 

discharge being important drivers of the export of terrestrial NPP to the aquatic system, and in 

turn CO2 evasion and the export of C to the coast. At high latitudes, the water surface area is 

dominated by lakes while most of the largest rivers of the world occur at tropical or sub-tropical 

latitudes (Fig. 4), and many of these rivers also have considerable floodplains.  

 

Chapter 1 Figure 3: CO2 efflux from a) rivers to the atmosphere and b) lakes to the atmosphere 

per COSCAT region, taken from Raymond et al. (2013). Units are g m-2 C yr-1. 

a) b) 
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 Note however, the particularly large uncertainty ranges and in particular for lake CO2 evasion, 

largely caused by an inability to accurately estimate the number of small lakes (Raymond et al. 

2013).  Raymond et al. (2013) used simple empirical size- distribution relationships from the 

literature (Downing et al., 2012; McDonald et al., 2012) to predict the size and distribution of 

all lakes smaller than 3.16 km2, which accounts for most of this uncertainty. Despite these large 

uncertainties, the large-scale spatial patterns in lake and river CO2 evasion are generally 

supported by the findings of other global and regional studies. We discuss these studies in more 

detail in the following sections, as well as estimates for the export of C from the LOAC to the 

coast. 

 

1.2.1. CO2 evasion from rivers 

Raymond et al. (2013) could not find significant relationships between river pCO2 and various 

environmental divers at the scale of COSCAT regions but a 2015 study (Lauerwald et al., 2015) 

utilized largely the same database to derive regression relationships at the river catchment 

scale, with the watersheds delineated based on the Hydrosheds (15 arcsec-Lehner et al., 2008) 

and Hydro1k (1km- U.S. Geological Survey) geodatabases. Lauerwald et al. (2015), estimated 

substantially smaller CO2 evasion from rivers of 650 (483–846) Tg C yr-1, with the uncertainty 

Chapter 1 Figure 4: Map showing global distribution of surface water and graphs 

of surface water area versus latitude and longitude, taken from Pekel et al. (2016). 
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range calculated using Monte Carlo simulations. They were able to explain almost 50% of the 

global spatial variation with only three drivers; terrestrial NPP, population density, and slope 

gradient with the first two showing positive relationships with pCO2 and the last having an 

inverse relationship. Note that they also found significant positive relationships between pCO2 

and both air temperature and the flooded proportion of the catchment. Using this approach, 

they were also able to provide the spatial variation of CO2 evasion at a much higher resolution 

of 0.5°. While the magnitude of the flux is considerably smaller than that estimated by 

Raymond et al. (2013), mainly due to lower estimates of mean pCO2 in tropical rivers (an area 

of relatively sparse data), it largely confirmed the regional hotspots of Raymond et al. (2013).   

There have also been various attempts to estimate CO2 evasion within regional hotspot areas. 

Rather than using empirical modeling, these regional estimates have generally relied on even 

simpler approaches, namely aggregation of observed data and upscaling using an estimate of 

river surface area. For example, Rasera et al. (2013) upscaled observation to estimate 

CO2 evasion from the Amazon Basin at 0.8 Pg C yr-1 while more recently, Sawakuchi et al. 

(2017) added observations from the basin area downstream of Obidos and concluded that CO2 

evasion from the entire Amazon Basin (down to mouth) could potentially be as high as 1.39 

Pg C yr-1. If accurate the latter estimate represents 77% of the 1.8 Pg C yr-1 global estimate by 

Raymond et al. (2013) and several times that estimated by Lauerwald et al. (2015). 

Incongruities such as these only seem to confirm how little we truly understand. The Congo 

Basin, the second largest river basin in the world, has also been confirmed as a hotspot area; 

Borges et al., (2015) used a simple upscaling approach to estimate present day CO2 evasion 

from the rivers of the Congo basin at 133-177 Tg C yr-1(Borges at al., 2015).  

1.2.2 CO2 evasion from lakes 

Several studies have quantified the flux of CO2 from lakes at the national scale, again largely 

relying on upscaling of observations and empirical modelling (Humborg et al., 2010; 
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McDonald et al., 2013; Butman et al., 2016). For the USA, Butman et al. (2016) delineated 

lake pCO2 and FCO2 for 19 sub-regions of the USA and calculated a total efflux of 16 (14.3–

18.7) Tg C yr-1, while Humborg et al. (2010), estimated pCO2 and FCO2 for 5 lake size classes 

and calculated a total FCO2 from Swedish lakes of 1.74 Tg C yr-1. No such national scale 

studies have been undertaken for Canada or Russia, the two most dominant countries in terms 

of total lake area (Verpoorter et al., 2014), and Canada in particular was identified as a hotspot 

are for lake CO2 evasion in Raymond et al. (2013, Fig 3 b).  Raymond et al. (2013), remains 

the only study to attempt to resolve the spatial variation of CO2 evasion from lakes beyond the 

national scale, at the resolution of the COSCAT basins (Fig. 3), and a similar high-resolution 

study to what was undertaken by Lauerwald et al. (2015) for rivers, does not exist for lakes. 

Thus, an obvious knowledge gap in our attempts to constrain the LOAC budget and in turn the 

land sink, is a regional to global scale assessment of the spatial variation in lake CO2 evasion 

in a similar manner to what has been undertaken for rivers. While substantial uncertainties in 

the spatial variation of river CO2 evasion remain (Lauerwald et al., 2015), the current 

uncertainties associated with lake CO2 evasion are considerably larger (0.06-0.84 Pg C yr-1, 

Raymond et al., 2013).  In summary, understanding and quantifying the spatial variation of 

CO2 evasion in lakes is a clear research avenue, which requires further investigation.  This 

discussion is continued in greater detail in chapter 2. 

1.2.3. Export flux of C to the coast 

Quantifying the export of C from land to the coast is important for the partitioning of C between 

the land and ocean sink, something that is not currently accounted for in the DGVMs used to 

estimate the Global Carbon Budget (GCB) (Le Quere et al., 2018b). Like the evasion fluxes, 

this has largely been estimated using empirical methods. Ludwig et al. (1996) found that they 

were able to explain the vast majority of the variation in DOC fluxes in 29 major rivers based 

on drainage, basin slope and soil C while they were also able to explain variation in POC as a 
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function of sediment flux, in turn related to drainage, rainfall and basin slope. Using regression 

models to upscale these relationships, they estimated a TOC flux from rivers to the coast of 

0.38 Pg C yr-1. Following on from this Meybeck et al. (2006) devised the COSCAT global 

database (Fig. 3); a set of 151 catchments characterized by area, latitudinal range, runoff and 

coastal limits, amongst other things, with the aim of providing a consistent framework within 

which to estimate the transfer of water, sediments, and nutrients from land to the ocean. The 

original study (Meybeck et al., 2006) used the COSCAT delineation to estimate average runoff 

and Nitrogen yields globally for the 151 catchments, but other studies have applied it in 

estimating C fluxes (Mayorga et al., 2010; Raymond et al., 2013).  This approach is only 

designed to provide mean annual values of discharge and nutrient yields at the mouth of each 

COSCAT basin and therefore its main utility is in providing a picture of the spatial variation 

and in identifying hotspot catchments in land-ocean linkage, the Amazon Basin being one such 

region. The Global NEWS model is a hybrid model, incorporating both empirical and 

mechanistic aspects to estimate annual exports of C, N and P at river basin mouths, and builds 

on the work of both Ludwig et al. (1996) and Meybeck et al. (2006). Indeed, the POC 

component is modelled using the same empirical relationship of Ludwig et al. (1996), a 

function of sediment flux, while the basins are defined using a precursor of the methodology 

described in Meybeck et al. (2006), and at a similar scale. They estimate a TOC flux to the 

coast of 0.30 Pg C yr-1, similar to the 0.38 Pg C yr-1 calculated by Ludwig et al. (1996), while 

an older upscaling study estimated that this flux could be as high as 0.53 Pg C yr-1. More 

importantly, as in Meybeck et al. (2006) they are were able to identify hotspot areas of TOC 

export, namely the tropical latitudes.  Additionally, several studies have put the DIC export 

flux from inland waters at around 0.3 Pg C yr-1 (Suchet & Probust., 1996; Stallard et al., 1998).  

Data-driven models are useful in providing estimates of present-day fluxes of C along the 

LOAC and also allow estimates of the uncertainties associated with the data and statistical 
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relationships, as was for example performed using Monte-Carlo simulations in Lauerwald et 

al. (2015). However, data-driven models are reliant upon accurate measurements or at the very 

least a good understanding of the uncertainty associated with such observations. In reality, data 

accuracy is difficult to ensure given that measurements of pCO2 are overwhelmingly indirect 

and associated with various errors (Wallin et al., 2014; Abril et al., 2015). CO2 fluxes from 

inland waters are also usually indirectly calculated, using pCO2 measurements along with an 

empirical parameterization of gas exchange velocity k, another considerable source of 

uncertainty. As such, if data-driven approaches are used, they need to be combined with robust 

and transparent estimations of all major sources of uncertainties. Additionally, in order to 

explore the effects of climate and land use change, and other perturbations on LOAC fluxes, 

data driven models need to be complemented by or indeed coupled to process based/ 

mechanistic models. 

1.3. Temporal variation in aquatic C fluxes from seasonal to centennial 

timescales 

1.3.1. Seasonal variations 

Much like with spatial variation, in order to provide reliable estimates of present-day estimates 

of inland water C fluxes, we need to be able to account for the temporal variation. Moreover, 

if we are to model the seasonal and longer-term changes in these fluxes, it is essential that we 

can understand and represent the key drivers of this change. Existing global estimates of LOAC 

C fluxes such as Raymond et al. (2013) deal with mean annual fluxes, but in reality, aquatic C 

fluxes exhibit strong seasonal patterns. In the boreal region for example, research has found 

that CO2 accumulates under ice covered lakes in winter, leading to very high emissions during 

ice melt (Striegl et al., 2001). A synthesis of data sampled during ice melt (Denfeld et al., 2018), 

concluded that the ice-melt period was on average responsible for 17% of annual CO2 evasion 
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from high latitude lakes. Similarly, snowmelt has generally been found to drive an increase in 

pCO2 and CO2 evasion in lakes (Evans et al., 2013) and rivers (Lauerwald et al., 2015). 

More generally, seasonal variation in hydrology has been identified as one of the most 

important drivers of the seasonal variation in both DOC and pCO2 concentrations in rivers and 

lakes across different latitudes, though the manner of this relationship is variable. In tropical 

rivers for example, Richey et al. (2002) found that pCO2 in the Amazon Basin is closely 

correlated with discharge, rising and falling with river flow as allochthonous C is transported 

to the LOAC from wetlands and terrestrial systems. Discharge has also been shown to drive 

higher pCO2 in temperate rivers (Marescaux et al., 2018) again largely as a result of imported 

allochthonous C. Moreover, a positive relationship between seasonality in discharge and pCO2 

has been found in some boreal lakes (Rantakari & Kortelainen, 2005; Sobek et al., 2003). 

However, the relationship is different in areas with important groundwater contributions to 

aquatic CO2 concentrations.  Nydhal et al. (2017) found negative relationships between 

precipitation and pCO2 in some boreal lakes and suggested that this may be a result of increased 

precipitation causing a dilution of CO2 concentrations due to an altered balance between surface 

and CO2 -rich groundwater flow.  

1.3.2. Interannual variations and climate extremes 

Significant interannual variation in river pCO2 /CO2 evasion has also been observed at various 

latitudes. A recent study by Almeida et al (2017) demonstrated that in addition to seasonal 

variation, large flood events also drive interannual variation in CO2 evasion from the Madeira 

River (a tributary of the Amazon), namely that years with extreme flooding evade 20% more 

CO2 to the atmosphere per unit area than years without. Similarly, infrequent but large flood 

events have also been shown to drive the transport and mineralization of terrestrial dissolved 

organic matter (DOM) in the USA (Raymond et al., 2016). Significant interannual variation in 
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pCO2 has also been observed in boreal lakes, driven by interannual variation in precipitation 

(Rantakari & Kortelainen., 2005). 

Furthermore, previous research has shown that the terrestrial C cycle varies both seasonally 

and interannually and is sensitive to the ENSO cycle (Zhao & Running., 2010; Wang et al., 

2018) while the same has been demonstrated in regional studies of the Amazon (Gatti et al., 

2014; Doughty et al., 2015; Feldpausch et al., 2016).  This substantial interannual variation can 

be seen in the aggregated global land sink of the GCP (Fig. 2). However, as previously 

mentioned, the LOAC and its interannual variation is not integrated into the GCP estimates as 

it is not represented in the underlying models. As such, another knowledge gap is how the 

interannual variation of the terrestrial and aquatic cycles interact, particularly during years with 

extreme climatic events. This can only be achieved using a model which integrates the aquatic 

C cycle within the terrestrial. 

1.3.3. Long-term trends associated with climate change and anthropogenic 

perturbation 

Additionally, LOAC fluxes have also been shown to vary over decadal to centennial timescales 

and these changes are often associated with direct anthropogenic perturbation such as land-use 

change, hydrological management and climate change, though the effects are often not isolated. 

Globally, Regnier et al. (2013) estimated that anthropogenic perturbation has increased the 

transport of C to the freshwater system by around 1 Pg C yr-1 since pre-industrial times, largely 

as a result of increased export from soils. Local and regional scale studies have also found 

evidence of perturbation along the LOAC. A study in 2016 along the Mississippi (Ren et al., 

2016) identified land-use change including land management practices (such as fertilization 

and irrigation), followed by change in atmospheric CO2, as the biggest factors in a 40% 

historical increase in DOC export to the Gulf of Mexico (Ren et al., 2016). However, Jones et 

al. (2003) found a significant decrease in pCO2 from 1973-1994 in a study of 417 streams and 



Introduction 

32 

 

rivers across the contiguous USA, and suggested that this was a consequence of a reduction in 

C import from the terrestrial environment. In the Seine Basin, land management practices have 

been shown to drive seasonal variation in pCO2 while waste-water pollution has been found to 

influence longer term (1970-2015) changes in pCO2 (Marescaux et al., 2018). Le et al. (2018) 

observed that between 1960 and 2015 both DOC and DIC had decreased significantly in the 

Red River in Vietnam, the former as a result of dam impoundment and the latter as a result of 

carbonate precipitation in irrigated, agricultural land in combination with reduced river flow. 

Damming has also been shown to have an impact on the LOAC globally. By the beginning of 

the 21st century, Maavara et al. (2017) showed that the combined effect of in reservoir C 

mineralization and burial had reduced OC export from inland waters to the coast by 13% 

(48±11 Tg C-1) and predict that this value could increase to 19% by 2030 (83±18 Tg C-1).  

Increasing soil erosion of soil organic C (SOC) represents another long-term change in the C 

cycle and a recent study, Naipal et al. (2018) showed that this flux has been substantially 

perturbed since 1850, increasing the export of SOC to the LOAC. Finally, inputs to the LOAC 

from physical erosion of inorganic C (as well as highly resistant OC) represents a flux which 

operates at even longer timescales and in the context of the scope of this thesis (seasonal to 

centennial timescales) is refractory, i.e. is a passive flux.  This discussion of the temporal 

variation in aquatic C fluxes is by no means exhaustive but aims to highlight the complexity of 

C dynamics along the LOAC and the challenges we face in trying to represent and quantify 

this variation across larger scales. This challenge is unlikely to be met using only the empirical 

approaches described in the previous section.  Climatologies of pCO2 have been produced for 

both the coastal and open ocean based on empirical methods (Landschützer et al., 2013; 

Laruelle et al., 2017) using the SOCAT database which contains several million measurements, 

but this requires a data network of sufficiently high temporal and spatial resolution. The current 
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database of river and lake pCO2 is simply insufficient to do the same for rivers and lakes, 

certainly at regional to global scales.  

1.4. Process based modelling approaches to understanding the LOAC 

Considering the current limitations in inland water C flux datasets, arguably the most efficient 

way to investigate the variation of these fluxes, from seasonal to centennial timescales, and 

particularly their response to future perturbations, is to use process based/ mechanistic models. 

With these models, one can apply different scenarios of atmospheric CO2, climate and land-

use change amongst other boundary conditions, to investigate how the C cycle will react to 

different perturbations, which can eventually be used to inform environmental management 

policies. As previously discussed, the LOAC is not currently integrated into any of the DGVMs 

used by the GCP. One of these is ORCHIDEE, the land surface model of the IPSL (Institut 

Pierre Simon Laplace) Earth System Model. Figure 5 illustrates the main processes simulated 

in the ORCHIDEE model (Krinner et al., 2005); while the water balance (a) and the C cycle 

(c) are both represented, the transfer and transformation of C to, and along the LOAC is 

neglected.  

Attempts to develop mechanistic models of C fluxes along the LOAC began with the 

representation of C export fluxes from inland waters to the coast.  In a 2013 paper, Kicklighter 

et al. (2013) further developed the existing Terrestrial Ecosystem Model (TEM) to represent 

the transfer of DOC along Arctic rivers and export to the Arctic Ocean. The existing TEM is a 

process-based model which uses high resolution input datasets on climate, elevation, soils and 

land-use amongst other things, to simulate plant growth, C and N exchange between vegetation 

and soil pools, as well as exchanges between terrestrial pools and the atmosphere via primary 

production, respiration and decomposition. The Kicklighter et al. (2013) study added two 

processes; DOC production from incomplete decomposition of litter and soil organic matter 

and DOC leaching into the river network, with leaching in turn depending on concentration of 
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DOC in combination with the runoff of rainwater and snowmelt. Applying this approach at a 

spatial resolution of 0.5° and a monthly temporal resolution, they estimated that an average of 

32 Tg C yr-1 has been transported from the terrestrial to the aquatic system across the pan-artic 

over the 20th century. Moreover, they used the model to show that historical changes in 

environmental factors, mainly climate change, have increased cumulative DOC leaching by 

258 Tg C between 1900 and 2006.  Though it should be noted that the model performance was 

mixed; it was able to recreate present-day observed DOC loads relatively closely (± 25% of 

observed) in 2 of the 8 watersheds studied.  

 

Chapter 1 Figure 5: The main processes simulated in ORCHIDEE (Krinner et al., 2005). The 

processes are grouped in terms of the water balance (a), the energy balance (b), the 

biogeochemical processes (c) and anthropogenic processes (d). Although the water and energy 

budget were separated in this presentation, both need to be run at the same time. These 

processes are coded in a group of modules called ‘Sechiba’ and are the backbone of 

ORCHIDEE. In addition to Sechiba, the biogeochemical code and the anthropogenic code, 

grouped in modules called ‘Stomate’, can be activated. Several individual processes can be 

a) b) 

c) d) 
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switched on or off, so supporting a wide range of model set-ups. Nevertheless, the model can be 

run without activating Stomate. 

A 2015 study employed the Dynamic Land Ecosystem Model 2.0 (DLEM 2.0) at a resolution 

of approximately 0.1° to simulate historic changes to not only DOC export but also POC and 

DIC export from North-Eastern USA to the Atlantic Ocean. DLEM is a full DGVM and meets 

the criteria for use in the GCP (Le Quere et al., 2018b). As well as the terrestrial C cycle, DLEM 

2.0 includes DOC leaching to the LOAC, the export of POC to the LOAC via soil erosion and 

export of DIC to the LOAC as a result of dissolution of atmospheric CO2, dissolution of soil 

CO2, and carbonate rock weathering. Applying DLEM 2.0, Tian et al. (2015) found an increase 

in DIC export from eastern North America to the Atlantic Ocean from 1901-2008 but no 

significant trend in DOC or POC. They demonstrated that climate change and increasing 

atmospheric CO2 increased long-term C export while land-use change decreased C export. In 

terms of model performance, they note that the R2 of observed vs simulated DOC time series 

was over 0.85 for seven of the river basins in which the model was applied, though they do not 

provide values of root-mean square error (RMSE). 

The ORCHILEAK model (Lauerwald et al., 2017) is a new model branch of ORCHIDEE 

(Organizing Carbon and Hydrology in Dynamic Ecosystems) (Krinner et al. 2005), the land 

surface component of the Institut Pierre-Simon Laplace (IPSL) earth system model (ESM) 

(Fig. 5). It stimulates the production of DOC in the canopy and soils, the leaching of DOC 

and CO2 from soils to the river network, DOC mineralization and the subsequent CO2 

evasion from the water surface, as well as DOC and CO2 export to the coast. It also simulates 

the exchange of C between litter, soils and water on floodplains and in swamps, and 

integrates the LOAC within a full representation of the terrestrial C cycling as simulated by 

ORCHIDEE. Prior to this thesis, ORCHILEAK had been applied to the Amazon basin where 

it was able to recreate seasonal patterns of observed DOC fluxes and CO2 evasion across the 

Amazon basin (Lauerwald et al., 2017) It has also recently been used to estimate long term 
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perturbation of the integrated LOAC C cycle in the Amazon Basin (Lauerwald et al., in 

submission), see chapter 3 for further discussion). 

The only process-based model to have been applied at the global scale to simulate the spatio-

temporal variation in the transport of C along the river network is the recently published 

TRIPLEX‐HYDRA (Li et al., 2019). The model performed moderately well against 

observations in terms of DOC yield (against annual averages for 26 major river, mean R2 = 

0.61) and was able to explain >50% of the interannual variation in all but three of the rivers. 

From 1951-2015, they simulated a decreasing trend in DOC flux in the mid-high latitude 

rivers (30-90°N) and an increasing trend at tropical latitudes (Li et al., 2019). They also 

highlighted spatial hotspots in DOC yield (g C m-2 yr-1) for the present day, the Amazon and 

Congo Basin being two such regions, as well as some of the large high-latitude basins (Li et 

al., 2019). TRIPLEX‐HYDRA is a simpler mechanistic model compared to ORCHILEAK 

and DLEM which means that it is arguably easier to apply at the global scale. However, it 

does not incorporate as many processes as the other two and moreover, it does not meet the 

criteria for the models used in the annual GCB. 

These examples aim to highlight the power of process-based models to quantify the spatio-

temporal variation in C fluxes along the LOAC and to better understand and attribute the 

most important processes driving their short-term variation and longer-term perturbation. 

However, there are disadvantages associated with process-based models. Firstly, it is more 

difficult to systematically assess the uncertainty associated with process-based estimates. 

With empirical models, one can for example, use the statistical parameters (b-estimates) 

associated with multiple linear regressions as a basis to provide an objective assessment of 

uncertainty. In process-based models, uncertainty can be assessed against point based or 

aggregated sets of observations using RMSE for example, but it is more difficult to do this in 

a systematic way across the entire mode domain because of data limitations. Another option 
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is to run sensitivity analyses by adjusting model parameters or to apply an uncertainty range 

to the model forcing files. In studies using multiple mechanistic models, one can also assess 

the range in multi-model outputs, as is done in for the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP), though currently only two ISIMIP models integrate the 

LOAC.  

More generally process-based models are always vulnerable to criticism for not incorporating 

all of the important processes; in its current form ORCHILEAK does not account for nutrient 

limitation for example (see chapters 4 and 5 for further discussion). These models are 

however, in constant evolution and even incomplete versions arguably represent the best 

options to understand the long-term dynamics of the LOAC at large scales, and crucially to 

integrate the aquatic and terrestrial C cycles. 

1.5. Contribution of this thesis 

Previous research has shown a close relationship between the terrestrial and aquatic C cycle, 

namely that terrestrial NPP is exported to the aquatic system, driven largely by the hydrological 

cycle. Moreover, as discussed, a number of hotspot areas of aquatic CO2 evasion have been 

identified, and a substantial temporal variation has been demonstrated. However, there remains 

considerable gaps in our knowledge, particularly associated with understanding and accounting 

for the temporal and spatial variation of aquatic C fluxes at regional to global scales, which we 

know from local scale studies, are substantial. This is reflected in the large uncertainty bands 

associated with global estimates of these fluxes and in the fact that the terrestrial C cycle 

remains the sink/source with the largest uncertainty in the most recent Global Carbon Budget 

(Le Quéré at al., 2018b). In this thesis we identified three particularly important regional 

hotspots of the LOAC, with significant gaps in our understanding and designed research 

questions for each, to address some of these unknowns. 
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Chapter 2: CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, 

and future projections 

Considerable past research has been undertaken to understand what drives pCO2 variation in 

boreal lakes and to quantify the CO2 evasion fluxes to the atmosphere from the scale of 

individual lakes to the national scale such as for Sweden (Roehm et al., 2009; Humborg et al., 

2010). However, the study of Raymond et al. (2013., Fig. 3 b) remains the only attempt to 

estimate pCO2 variation and CO2 evasion from lakes at the regional to global scale, and this 

was only performed at the very course resolution of the COSCAT regions (Meybeck et al., 

2006) using a relatively simple upscaling methodology, and is associated with large 

uncertainties. Additionally, no attempt has been made to predict how pCO2 and CO2 evasion 

are likely to change in the future across the boreal region and this is an important research 

question given that the region is predicted to undergo substantial climate change over the 21st 

century (Gauthier et al., 2015; Intergovernmental Panel on Climate Change (IPCC), Climate 

Change, 2013; Koven, 2013; Price et al., 2011). 

With these considerations in mind, we address the following research questions in chapter 2: 

• Can we develop an empirical model, using similar methods applied for rivers by 

Lauerwald et al. (2015), which can explain the spatial variation of existing boreal lake 

pCO2 observations, using only universally available geodata as dependent driver 

variables? 

• Can we in turn use estimates of gas exchange velocity k and lake area, and a state-of-

the-art satellite-derived lake area database (Verpoorter et al., 2014), to calculate pan-

boreal lake CO2 evasion? 
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• Can we use this empirical model, along with future model projections of the drivers, to 

estimate the evolution of boreal lake pCO2 and CO2 evasion over the 21st century under 

different Representative Concentration Pathways (RCPs)? 

• Finally, what are the uncertainties in our calculations and what is the principal source 

of uncertainty? 

Chapter 3: Aquatic carbon fluxes dampen the overall variation of net ecosystem 

productivity in the Amazon basin: An analysis of the interannual variability in the 

boundless carbon cycle. 

In the tropics, previous research has shown that the terrestrial C cycle varies both seasonally 

and interannually and is sensitive to the ENSO cycle (Zhao & Running., 2010; Wang et al., 

2018) while the same has been demonstrated in regional studies of the Amazon (Gatti et al., 

2014; Doughty et al., 2015; Feldpausch et al., 2016). However, with the exception of the Gatti 

et al. (2014) study which directly measured CO2 fluxes in the lower troposphere, none of these 

studies accounted for the aquatic C cycle nor the interaction between it and the terrestrial C 

cycle, and the Gatti study is limited in that it only covered a two-year period (2010-2011). The 

LOAC is often dismissed as many argue that the majority of the terrestrial C cycle is effectively 

closed, i.e. it does not matter if the C is emitted back to the atmosphere as respiration from 

terra-firme or whether it is transported to the aquatic system before being evaded from the 

water surface. Either way the C is lost back to the atmosphere, though of course C can also be 

sedimented and buried in the LOAC or exported to the coast. Separately, research has shown 

that across the Amazon, aquatic CO2 evasion is seasonally variable (Richey et al., 2002). More 

recently, Almeida et al (2017) demonstrated that in addition to seasonal variation, large flood 

events also drive interannual variation in aquatic CO2 evasion from the Madeira River (a 

tributary of the Amazon).  However, a major knowledge gap remains in understanding how the 

aquatic fluxes vary interannually across the basin, and in turn what effect they have on the 
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overall C cycle of the Amazon. These research questions are particularly pressing given that 

the region is increasingly vulnerable to extreme climatic events such as droughts and floods 

(Marengo et al., 2011; Chou et al., 2013; Gloor et al., 2013; Zulkafli et al., 2016). 

With these knowledge gaps in mind, we set out to tackle the following research questions in 

chapter 3 using the ORCHILEAK model (Lauerwald et al., 2017): 

• To what extent do the LOAC fluxes (aquatic CO2 evasion and C export to the coast) 

vary inter-annually and seasonally throughout the entire Amazon Basin? 

• How does interannual variation in discharge and flooding affect the LOAC fluxes, 

terrestrial NPP, soil heterotrophic respiration (SHR) and ultimately the NEP of the 

Amazon Basin, particularly in the context of increasing climatic extremes? More 

specifically, does the incorporation of LOAC fluxes amplify or dampen variation in 

NEP?  

Chapter 4: Historic and future trends of aquatic carbon fluxes integrated within the 

Congo Basin carbon balance 

The Congo has been shown to be a hotspot region for both the terrestrial and aquatic C cycle, 

as the world’s second largest area of contiguous tropical rainforest and second largest river by 

discharge. In terms of the terrestrial C cycle, the largest intact tropical peatland in the world 

was recently discovered in the Congo, storing around 30 Pg C alone (Dargie et al., 2017). 

LOAC fluxes are also estimated to be substantial but again until now have only recently been 

calculated by upscaling from a spatially and temporally limited dataset using considerable 

assumptions. Research has shown that terrestrial net primary productivity (NPP) and in turn 

above ground C storage in living trees, have increased in recent decades in tropical Africa (Yin 

et al., 2017; Lewis et al., 2009) due in large part to a combination of increasing atmospheric 

CO2 concentrations and climate change (Ciais et al., 2009; Pan et al., 2015). Moreover, these 
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trends are predicted to continue into the future. However, these studies did not incorporate 

inland water fluxes and we do not know how C export to the LOAC, CO2 evasion or export to 

the coast have been perturbed over time, nor how they will change under future climate and 

land use change scenarios.  

 With these knowledge gaps in mind, in chapter 4 we aim to address the following research 

questions: 

• To what extent have LOAC fluxes (CO2 evasion and C export to the coast) in the Congo 

Basin changed from 1860 to the present day and what are the primary drivers of this 

change? 

• How will these fluxes change under future climate and land use change scenarios (RCP 

6.0)? 

• What does the temporal evolution of LOAC fluxes mean for the wider C cycle of the 

Congo Basin? 
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2.  CO2 evasion from boreal lakes: revised estimate, drivers of spatial 

variability, and future projections 

This chapter is published in Global Change Biology. Full reference: Hastie, A., 

Lauerwald, R., Weyhenmeyer, G., Sobek, S., Verpoorter, C., & Regnier, P. (2018). CO2 

evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future 

projections. Global Change Biology, 24(2), 711–728. http://doi.org/10.1111/gcb.13902 

Abstract 

Lakes (including reservoirs) are an important component of the global carbon (C) cycle, as 

acknowledged by the 5th assessment report of the IPCC. In the context of lakes, the boreal 

region is disproportionately important contributing to 27% of the worldwide lake area, despite 

representing just 14% of global land surface area. In this study, we used a statistical approach 

to derive a prediction equation for the partial pressure of CO2 (pCO2) in lakes as a function of 

lake area, terrestrial net primary productivity (NPP) and precipitation (r2 = 0.56), and to create 

the first high resolution, circumboreal map (0.5°) of lake pCO2. The map of pCO2 was 

combined with lake area from the recently published GLOWABO database and three different 

estimates of the gas transfer velocity k to produce a resulting map of CO2 evasion (FCO2). For 

the boreal region we estimate an average, lake area weighted, pCO2 of 966 (678- 1325) μatm 

and a total FCO2 of 189 (74-347) Tg C yr-1, and evaluate the corresponding uncertainties based 

on Monte Carlo simulation. Our estimate of FCO2 is approximately twofold greater than 

previous estimates, as a result of methodological and data source differences. We use our 

results along with published estimates of the other C fluxes through inland waters to derive a 

C budget for the boreal region, and find that FCO2 from lakes is the most significant flux of 

the land-ocean aquatic continuum, and of a similar magnitude as emissions from forest 

fires.  Using the model and applying it to spatially resolved projections of terrestrial NPP and 

precipitation while keeping everything else constant, we predict a 107% increase in boreal 

http://doi.org/10.1111/gcb.13902
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lake FCO2 under emission scenario RCP8.5 by 2100. Our projections are largely driven by 

increases in terrestrial NPP over the same period, showing the very close connection between 

the terrestrial and aquatic C cycle. 

2.1.  Introduction 

Lakes (including reservoirs) are an important component of the global carbon (C) cycle, as 

acknowledged by the 5th assessment report of the IPCC (Ciais et al., 2013). Global, regional 

and local studies commonly report carbon dioxide (CO2) supersaturation (e.g. Sobek et al., 

2005; Lapierre & del Giorgio, 2012; Weyhenmeyer et al., 2012; Raymond et al., 2013), 

resulting in an evasive flux of CO2 (FCO2 in this paper), which on a global scale, equates to 

approximately 0.32 to 0.64 Pg C yr-1 (Cole et al., 1994; Cole et al., 2007; Tranvik et al., 2009; 

Aufdenkampe et al., 2011; Raymond et al., 2013; Holgerson & Raymond, 2016).  This CO2 

outgassing corresponds to roughly 12-25 % of the total carbon flux mobilised from soils and 

the bedrock into aquatic systems (Regnier et al., 2013).  

In the context of lakes, the boreal forest region region (BF, as defined in Potapov et al., 2008) 

is disproportionately important. According to the satellite-based GLOWABO product 

(Verpoorter et al., 2014), 1.35 x 106 km2 out of 5 x 106 km2 lakes globally are located in this 

region, contributing to 27 % of the worldwide lake area, despite the BF representing just 14% 

of global land surface area. Boreal waters are also predicted to be very sensitive to future 

climate change; in particular with regard to increasing temperature and terrestrial net primary 

productivity (NPP), as well as mobilisation of C from thawing permafrost soils (Price et al., 

2011; IPCC, 2013; Koven, 2013; Gauthier et al., 2015). It is thus important to understand the 

consequences of future climate change for lake C cycling and lake FCO2. In order to project 

future boreal lake CO2 partial pressure (pCO2) and FCO2, we first need robust and spatially 

resolved estimates for the present day, and we then need to identify the key environmental 

drivers of lake FCO2.   
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The spatial heterogeneity in lake FCO2 has so far only been assessed using an approach 

averaging observed local lake values of pCO2 across a region of interest, from which an evasion 

rate was calculated and applied to the entire lake surface area of the region. At the national 

scale for the USA, McDonald et al. (2013) and Butman et al. (2016) resolved pCO2 and FCO2 

using 16 and 19 regions, respectively. Similarly, Humborg et al. (2010) calculated average 

pCO2 values and FCO2 rates for 5 lake size classes to estimate the total FCO2 from Swedish 

lakes, although only a single region was used here.  Raymond et al. (2013) presented the first 

global map of lake pCO2 and FCO2 for different lake size classes at the resolution of the so-

called COSCAT segmentation of Meybeck et al. (2006), which subdivides the world’s 

catchments into 231 units. While such regionalization provides robust estimates where data 

availability is high, they are of less use where observations are scarce or missing. In the case 

of boreal lakes, large data sets are available for Sweden, Finland, and the southeastern part of 

Canada. In contrast, data availability is scarce across very large portions of NW America and 

the Asian continent. Thus, for the regions that lack empirical data, pCO2 and FCO2 need to be 

modelled.   

In order to extrapolate pCO2 to those locations where data is scarce or absent, globally available 

environmental drivers need to be identified.  In previous studies, the spatial variability of lake 

pCO2 in high latitude regions has been linked to a wide range of variables including dissolved 

or total organic carbon (DOC/TOC) concentration in lake water (e.g. Roehm et al., 2009; 

Humborg et al., 2010; Lapierre & del Giorgio, 2012; Weyhenmeyer et al., 2012 for most recent 

contributions), lake area and depth (Sobek et al., 2003; Kortelainen et al., 2006; Roehm et al., 

2009; Humborg et al., 2010; Raymond et al., 2013), dissolved inorganic carbon (DIC) input 

from the catchment (Maberly et al., 2012; Weyhenmeyer et al., 2015; Perga et al., 2016), 

chlorophyll-a concentration (Kortelainen et al., 2006; Roehm et al., 2009; Kortelainen et al., 

2013; Maberly et al., 2012; Perga et al., 2016), and precipitation (Sobek et al., 2003; Rantakari 
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& Kortelainen, 2005). While hydrochemical and physical variables observed in the field give 

valuable insights into in-lake processes controlling pCO2 and its short-term variability, they are 

of limited use for extrapolations, as lake pCO2 can only be predicted where these variables have 

been locally observed. Considering the vast number of lakes in the boreal zone, the proportion 

that is covered by sampling programs is small. Therefore, geodata sets of potential 

environmental controls related to climate, terrain, geology, and vegetation, which cover the 

global landmass in a consistent way, are better alternatives for large-scale assessments.   

In 2013 Lauerwald et al. showed that a significant proportion of the spatial variability in river 

pCO2 in North America could be explained by catchment variables derived from geodatabases. 

Using a multiple regression analysis, they found that 43% (r2 =0.43) of the river pCO2 

variability across North America is related to annual mean precipitation, annual mean air 

temperature and mean catchment slope gradient. A similar approach was later applied to derive 

global maps of river pCO2 and FCO2 (Lauerwald et al., 2015). A multiple regression using 

terrestrial NPP, population density, mean catchment slope gradient, as well as mean air 

temperature at the sampling location was able to explain 47% (r2 =0.47) of the spatial 

variability in global river pCO2. The map of predicted pCO2 was then combined with estimates 

of stream surface area and gas exchange velocity k to derive a map of global FCO2 from rivers 

at 0.5° resolution.  

In this study, we used globally available environmental drivers derived from geodatabases to 

predict a 0.5° map of lake pCO2 for the entire BF biome from a limited, spatially lumped set 

of sampling data. The map of pCO2 was then combined with lake area from the GLOWABO 

database (Verpoorter et al., 2014) and estimates of gas transfer velocity k to produce the first 

high-resolution map of boreal lake FCO2. We then merged our new map with the spatially 

resolved river FCO2 from Lauerwald et al. (2015), lateral land-ocean C exports (GlobalNews, 

Mayorga et al., 2010) and lake C burial (Heathcote et al., 2015), to derive a full aquatic carbon 
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budget for the circumboreal region. Finally, based on spatially resolved projections of 

terrestrial NPP and precipitation, we used the model to predict changes in lake pCO2 and FCO2 

over the 21st century. 

2.2. Materials and methods 

2.2.1. Lake pCO2 data 

Lake chemistry data was collated from a number of different databases pertaining to distinct 

regions (Fig. 1): 1) Swedish lake pCO2 data were taken from the Swedish lake chemistry 

database published in Weyhenmeyer et al. (2012), 2) pCO2 data from a number of other boreal 

regions (in particular the whole of Scandinavia and North America) were taken from a global 

lake pCO2 database published in Sobek et al. (2005), 3) Canadian lake pCO2 data were taken 

from Lapierre & del Giorgio. (2012), and 4) Siberian data was taken from Shirokova et al. 

(2013). The Siberian data were reported in µmol L-1 and converted into partial pressure using 

Henry’s constant, adjusted for water temperature, following Telmer & Veizer (1999).  
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Chapter 2 Figure 1:Geographical distribution of measured lake pCO₂ data (n= ~27,000 

samples). 

Approximately 99% of the pCO2 values were calculated from measured alkalinity, pH, and 

water temperature. Samples with a pH ≤ 5.4 were discarded because calculating pCO2 from 

alkalinity, pH, and water temperature is highly error prone in low-pH and low-alkalinity waters 

(Raymond et al., 2013, Abril et al., 2015). A recent study in Sweden (Wallin et al., 2014) found 

a slight overestimation of the average pCO2 in samples calculated with the alkalinity-based 

method. The majority of these samples had low alkalinity (< 0.07 meq L-1). As such, we 
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compared the median and average pCO2 values in our dataset above and below this alkalinity 

threshold. In fact, in our data the samples with an alkalinity > 0.07 meq L-1 had a marginally 

higher median/ average pCO2 than those ≤ 0.07 meq L-1.  We further investigated the effect of 

alkalinity on the indirect pCO2 data using simple linear regression. A significant but very weak 

correlation (r= -0.0308, p < 0.05, N = 26530) was found between the indirectly observed pCO2 

data and alkalinity (after discarding samples with pH ≤ 5.4). Therefore, we conclude that using 

a pH threshold of 5.4 is a sufficient criterion for filtering out unreliable data. Moreover, another 

study in Sweden and Finland (Denfeld et al., 2015) did not find a statistically significant 

difference between directly and indirectly measured pCO2 data (Wilcoxon each pair test: p > 

0.05).  The remaining 1% of the samples (which includes 25% of North American data) 

corresponded to direct pCO2 measurements (see Sobek et al., 2005 and Lapierre & del Giorgio, 

2012 for more details).   

In order to remove pCO2 data from lakes potentially covered by ice, where possible, only data 

measured at a water temperature greater than 4 °C and between the months of April to 

November were retained in the analysis. For a small number of samples (< 1%), water 

temperature was not reported and in these cases all data form April- November were retained. 

After the data selection procedure described above, approximately 27,000 pCO2 samples were 

retained. See discussion for further deliberation on the issue of ice cover.  

2.2.2 Data aggregation 

Based on coordinates and lake name, median pCO2 was calculated per sampling location. Then, 

using the median pCO2 for all sampling locations within each 0.5° grid cell, a spatially-

aggregated mean pCO2 was calculated at this resolution. This produced a single ‘open water’ 

lake pCO2 value for 584 grid cells located within the circumboreal region. In order to prevent 

a geographical bias and to have a similar number of pCO2 grids representing Scandinavia and 

North America, only Scandinavian grids with a mean pCO2 calculated from at least 22 median 
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pCO2 values (in other words 22 sampled lakes) were retained in our training data. This rule did 

not apply to the grids containing the very largest lakes in the Scandinavian dataset, which were 

included regardless of the number of samples used in data aggregation to ensure that they are 

represented. Indeed, the largest lakes in the boreal region are larger than the area of a 0.5° grid 

cell, meaning that in some cases it is not possible to have more than one lake in a grid. Given 

the relative sparsity of the North American data, all of the North American grids were retained 

regardless of the number of lakes represented in each grid. This selective procedure left 168 

grids evenly divided between Scandinavia and North America, as well as 4 grids in Siberia. 

Lake area data was also aggregated to a resolution of 0.5°, and log10 transformed prior to 

computing the mean log10 lake area per grid.   

2.2.3 Predictors of pCO2 

A set of environmental and climatic variables was selected and sourced, largely from publicly 

available geodatabases (Table 1). The choice of retained variables was guided by two 

principles: firstly, we only chose data that were global in coverage with a resolution of at least 

0.5°; secondly, we prioritized variables that have previously been shown to drive the variation 

of pCO2 in inland water bodies.  Among all variables, pCO2 and average slope gradient of the 

catchment clearly showed a skewed distribution, and were thus log-transformed before 

regression analysis.  

Firstly, the Pearson correlation coefficients between log10(pCO2) and all of the variables, as 

well as between variables themselves, were analyzed using the software package 

STATISTICA™.  Secondly, we fitted multiple linear regression models with all possible 

combinations of three of the 17 predictors described in Table 1 using the software package R 

(R Core Team 2013).  Initially, we placed no limit on the number of retained predictors, but 

found that adding a fourth predictor added little in the way of additional descriptive power. 

Therefore, we placed a limit of three predictors to ensure a parsimonious model. 
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Chapter 2 Table 1: Environmental geodata evaluated as potential predictors of log10(pCO2) 

(training data): Basic statistics 

 

Variable Unit Mean Median Min Max Source Resolution 

Lake area (Alake)  km² 10.95 0.52 0.01 82200.00 
Sobek et al., 2005; 

Weyhenmeyer et al., 2012; 

Lapierre & del Giorgio 2012 

30" 

Air temperature (T, 
Apr-Nov monthly 

mean)  

°C 9.01 9.30 1.20 12.80 Hijmans et al., 2005 30" 

Precipitation (P, 

Apr-Nov monthly 

mean) 

mm month−1 71.90 73.46 41.61 100.99 Hijmans et al., 2005 30" 

Wind speed (Apr-

Nov monthly mean) 
[m s-1] 3.94 3.83 2.09 5.89 Hijmans et al., 2005 30" 

Soil pH index (top 
5cm) – 5.14 5.12 4.68 6.18 SoilGrids., 2014 30" 

Soil carbon content 

(top 5cm) 
g kg−1  94.99 94.99 63.54 126.44 SoilGrids., 2014 30" 

Terrestrial net 

primary 

productivity (NPP) 

g C m−2 yr−1 486.73 504.15 60.20 746.89 Zhao et al., 2005 30" 

Population density Inh. Km-2 3.05 2.35 0.02 23.79 CIESIN & CIAT 2005 2.5" 

Elevation m 240.45 226.60 18.60 973.81 GLOBE, 1999 30" 

Catchment slope 
gradient 

Degrees 0.988 0.670 0.0945 8.744 
Lauerwald et al., 2015 

(GLOBE, 1999) 
30" 

Runoff mm yr-1 379.88 359.54 98.00 929.29 Fekete et al., 2002 30" 

% cover evergreen 

trees – 28 29 0 74 Global  Land  Cover.,  2000   2" 

% cover mixed trees – 22 18 0 83 Global  Land  Cover.,  2000   2" 

% cover cultivated 
areas – 10 02 0 88 Global  Land  Cover.,  2000   2" 

% silt of soil – 34 34 0 43 
Harmonized World Soil 

Database., 2000 
30" 

% sand of  soil – 52 53 0 62 
Harmonized World Soil 

Database., 2000 
30" 

% clay of soil – 13 13 0 21 
Harmonized World Soil 

Database., 2000 
30" 

2.2.4 Upscaling of pCO2 data 

The fitted regression equation was applied in a geographical information system (GIS) to build 

a high-resolution map (0.5°) of pCO₂ from the drivers selected from the statistical treatment of 

the geodata. Terrestrial NPP was taken from the MODIS satellite derived dataset described in 

Zhao et al. (2005), while precipitation was taken from Hijmans et al. (2005), a high-resolution 

database based on interpolation of global weather station data.  Log10 lake area (and in turn 

pCO₂) was adjusted to be representative for the total lake area within each grid, and hence the 

total gas exchange flux through the aquatic-atmosphere interface, using the following equation:  
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𝐴𝑑𝑗. 𝐴𝑙𝑎𝑘𝑒  =  
∑ 𝐿𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 )∗𝐴𝑙𝑎𝑘𝑒 

∑ 𝐴𝑙𝑎𝑘𝑒 
(𝑝𝑒𝑟 𝑔𝑟𝑖𝑑)                                                      (1) 

where Alake denotes lake area 

Lake area data from the literature (Sobek et al., 2005; Lapierre & del Giorgio 2012; 

Weyhenmeyer et al., 2012; Shirokova et al., 2013) was used for training the statistical model 

(i.e. lake area as a predictor of pCO₂) while lake area from the GLOWABO database 

(Verpoorter et al., 2014) was used for extrapolation of pCO₂ and calculation of FCO2. This is 

because each aggregated pCO2 value is only representative of those lakes, which happen to 

have been sampled in that specific grid. When we extrapolate to the circumboreal scale, we use 

the GLOWABO database so that estimated pCO2 is representative of the average size of all of 

the lakes in each grid. GLOWABO is a global inventory of lakes, which was developed by 

applying a lake extraction algorithm to high-resolution stationary satellite imagery (Verpoorter 

et al., 2012). As the database is stationary, it relies on an algorithm to filter the satellite images 

to minimize false detection due to mountain and cloud shadows. 

The regression model was validated with 131 of the discarded grids from Scandinavia, 

selecting only those aggregated from a minimum of 10 samples per grid. All of the validation 

data were aggregated to the 0.5° grid scale before being compared to predicted pCO2.  

2.2.5 Calculation of FCO2 

FCO2 was calculated using the equation: 

𝐹𝐶𝑂2 = 𝐴𝑙𝑎𝑘𝑒 ∗  𝑘 ∗  𝛥𝐶𝑂2          (2) 

where FCO2 is in moles d-1, Alake (m
2) denotes lake area, k (m d-1) the gas exchange coefficient, 

and ΔCO2 (mol m-3) difference between water and air pCO₂, assuming an atmospheric pCO₂ 

of 390 µ𝑎𝑡𝑚. In equation 2, lake pCO2 is computed according to the procedure described in 
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the preceding sections. pCO2 was then converted to CO2 concentrations using Henry’s constant 

KH, corrected for temperature.  

Lake area was calculated from the GLOWABO database (Verpoorter et al., 2014). The 

temperature adjusted k was derived from k600 (k for CO2 at 20°C in freshwater- Schmidt number 

of 600) for each 0.5° grid using the Schmidt number, calculated from the mean water 

temperature over the April-November period. Water temperature was in turn calculated from 

mean air temperature over the same period using the equation reported by Lauerwald et al. 

(2015): 

𝑇𝑤𝑎𝑡𝑒𝑟[°𝐶] = 3.941 + 0.818 𝑇𝑎𝑖𝑟 [°𝐶]  (R2 = 0.88)          (3) 

There are numerous methods for estimating k600 (m d-1) in the literature. In this study, we have 

compared estimated boreal lake FCO2 using three different methodologies for calculating k600. 

The first method is based on lake area, where four different k600 values (0.54, 1.16, 1.32 and 

1.90 m d-1) were applied for four corresponding lake area bins (<0.1, 0.1-1, 1-10 and >10 km2). 

This approach is taken from Raymond et al. (2013), following the relationship between k600 

and lake area proposed by Read et al. (2012). The second method is based on the relationship 

between k600  and wind speed given by Cole & Caraco (1998): 

𝑘600 = 2.07 + 0.251𝑈10
1.7           (4) 

where 𝑈10 is the average wind speed in m s-1 at 10m (Hijmans et al., 2005). This gives a k600 

range between 0.58 m d-1 and 2.04 m d-1. 

 

The third is taken from Vachon & Praire (2013) and incorporates the effects of both wind speed 

and lake area: 

𝑘600 = 2.51 + 1.48 ∗ 𝑈10 + 0.39 ∗ 𝑈10 ∗ 𝑙𝑜𝑔10 𝐴𝑙𝑎𝑘𝑒      (5) 

where Alake is in km2 and U10 in m s-1.  
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k600 has also been found to depend on buoyancy flux in addition to wind speed and lake area. 

MacIntyre et al. (2010) found that higher k600 values occur during convective cooling compared 

to heating, and that during overnight low wind conditions, k600 depends on buoyancy flux rather 

than wind speed. We were unable to take these additional considerations into account as we 

lacked the necessary data. Despite this, we are confident that with the use of three methods to 

calculate k600, and by explicitly incorporating its variation in our Monte Carlo analysis, we 

adequately account for the uncertainty associated with gas exchange velocity.    

FCO2 was then converted to g C yr-1 by multiplying by the molar mass of carbon (12.01 g mol-

1) and the number of days per year, 365.  FCO2, was first calculated per grid and for the four 

lake size categories, <0.1, 0.1-1, 1-10 and >10 km2 described previously (Read et al., 2012), 

before being amalgamated. 

Total FCO2 was calculated by summing FCO2 from each size class.  After pCO2 and FCO2 had 

been extrapolated, various masks were applied in ArcGIS in order to estimate values for 

different regions and countries. The boreal forest land cover region (BF) was taken from 

Potapov et al. (2008) (Fig. S13). 

2.2.6 Future projections of boreal pCO2 and FCO2 

We acquired data from four Earth System Models used in the 5th Coupled Model 

Intercomparison Project (CMIP5) to predict pCO2 and FCO2 over the 21st century for the IPCC 

scenarios RCP2.6 and RCP8.5 (IPCC, 2013): the Canadian Centre for Climate Modeling and 

Analysis (CCCma) CanESM2 model, the Met Office (UKMO) HadGEM2-ES model, the 

Institute Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR model and the Max Planck Institute 

for Meteorology (MPI) MPIESM-LR model. We selected these firstly, as they are all used in 

the CMIP5 project, and secondly because projected values of the environmental drivers of 

pCO2 identified for the present day (terrestrial NPP and precipitation), as well as air 
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temperature for adjusting future KH, and k via the Schmidt number (as described in preceding 

section), were easily accessible online. RCP2.6 an RCP8.5 will lead to radiative forcing levels 

of 2.6 and 8.5 Watts per square meter (Wm−2) respectively by the year 2100. RCP8.5 is 

characterised by very high energy intensity as a result of high population growth and a 

comparatively low rate of technological development while RCP2.6 is characterised by very 

low energy intensity, declining oil consumption and the use of carbon capture and storage 

technologies (CCS) (van Vuuren et al., 2011). The data were downloaded from the Earth 

System Grid Federation (ESGF) node hosted by the IPSL, for RCP2.6 and RCP8.5 model runs, 

as well as historical runs (1850-2005). All data were taken from the r1i1p1 realization of the 

simulations. In order to account for inter-annual variation, the data were aggregated in time to 

obtain projections for 10 year-periods centered on the years 2000, 2030, 2050 and 2100. For 

example, total annual terrestrial NPP for the year 2030 was based on aggregating across the 

years 2025-2034. Some of the models only provide projections up to the year 2100 so for this 

specific period we aggregated the data across the preceding 10 years, 2090-2099. After 

aggregation, the projections of terrestrial NPP, air temperature and precipitation were 

aggregated in a GIS to ensure a uniform spatial resolution of 0.5°. Finally, for each 0.5° grid, 

the simulated terrestrial NPP, air temperature and precipitation was adjusted using the 

difference between modelled and observed data for the 2000 period. For example, the terrestrial 

NPP for the year 2030 was adjusted according to: 

 𝑁𝑃𝑃2030,𝐴 = 𝑁𝑃𝑃2000,𝑂 +  (𝑁𝑃𝑃2030,𝑀 − 𝑁𝑃𝑃2000,𝑀)              (6) 

where A denotes adjusted, O denotes observed and M denotes modelled. NPP2000,O was taken 

from Zhao et al., (2005), which was also used for training the prediction equation.  
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This procedure is similar to the one applied in regional downscaling of future projections, to 

reflect the fact the Earth System models are mostly designed to predict future changes and not 

to capture spatial patterns at the (sub)-regional scale. 

After calculating future pCO2, we then added the projected increase in atmospheric pCO2 

(above the present-day value of 390 µ𝑎𝑡𝑚 used in this analysis) for the equivalent scenario and 

year. For example, under RCP8.5 atmospheric CO2 is projected to be 936 µ𝑎𝑡𝑚 by 2100 

(Meinshausen et al., 2011), and thus we added 546 (936-390) to our projected estimate of 

boreal lake pCO2 for the same year and scenario. With this approach, we account for the fact 

that we do not use present-day atmospheric pCO2 in our prediction equation of lake pCO2, but 

we assume it to be implicitly represented in the intercept of that equation, and we further 

assume that the increase in atmospheric pCO2 will lead to a corresponding, total increase in 

lake pCO2, preserving the total delta pCO2. In our calculation of FCO2 no such step is required 

as it is calculated from delta pCO2, not absolute lake pCO2. 

2.2.7 Uncertainty estimates based on Monte Carlo simulation 

We calculated the uncertainty associated with our pCO2 and FCO2 estimates (5th and 95th 

percentiles) using a Monte Carlo simulation comprising 10,000 runs. Here we calculated a 

probability density function for pCO2 based on varying the b estimates for each of the three 

predictors (terrestrial NPP, precipitation and lake area) retained in the multiple linear 

regression, assuming a normal distribution constrained by the standard errors of each b estimate 

(Table 4). Uncertainty associated with our future projections of pCO2 and FCO2 were similarly 

calculated using a Monte Carlo simulation forced by future projections of terrestrial NPP and 

precipitation. However, to account for the variation of terrestrial NPP and precipitation 

projections resulting from using four different Earth System models, we performed 4x 2,500 

runs (2,500 for each model). Uncertainty was propagated to the calculation of FCO2 using 

equation (2), where k values were randomly selected between the minimum and maximum 
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values calculated for each grid by the three methods outlined in the previous section. 10,000 

Monte-Carlo runs were again performed, assuming a uniform distribution of k. It was also 

assumed that pCO2 and k vary independently of one another. The Monte Carlo analyses were 

performed using the statistical software R 3.2.2 (R Core Team, 2015).  

2.3.  Results 

2.3.1 Controls of spatial variation in pCO2 

Table 2 presents the correlations between aggregated (0.5) log10(pCO2) and 17 variables 

derived from environmental geodata (Table 2).  

Highly significant (p < 0.001) positive correlations were found for wind speed (Apr-Nov 

monthly mean) (r = 0.58), annual terrestrial net primary productivity (terrestrial NPP) (r = 

0.35), air temperature (T, Apr-Nov monthly mean) (r = 0.34), population density (r = 0.46), the 

percentage of the grid covered by needle- leaved evergreen trees (GLC land cover class 4) (r = 

0.36) and by cultivated or managed land (GLC 16) (r = 0.32), while highly significant negative 

correlations were found with log10(Alake) (r = -0.51), precipitation (P, April to November 

monthly mean) (r = -0.42), elevation (r = -0.30) and runoff (r = -0.33).   

In order to ensure a parsimonious prediction model, we restricted the maximum number of 

drivers to three. All possible combinations of drivers were tested in the regression analysis. 

Based on this analysis, the model with both the highest r2 and lowest Root-mean-square error 

(RMSE) included log10(Alake), P and T, as predictors (Table 3).  However, we chose to proceed 

with the second-best performing model, composed of log10(Alake), terrestrial NPP and P. This 

choice is justified by the more direct mechanistic link between lake pCO2 and terrestrial NPP 

compared to T. T is a proxy for many different variables and controls a variety of different 

processes in multiple ways, meaning that T related patterns at the spatial scale are not 

necessarily transferrable to the temporal scale (Weyhenmeyer et al., 2016). In addition, the 
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allochthonous C inputs to lakes, as related to terrestrial NPP, have been shown to be a stronger 

constraint on CO2 evasion from boreal lakes than the direct temperature effect on 

decomposition rates (Kortelainen et al., 2006). Accordingly, terrestrial NPP has been identified 

as a main control of CO2 emission from lakes (Maberly et al., 2012), underpinning its strong 

mechanistic linkage to lake FCO2. It is likely that the effects of terrestrial NPP are statistically 

represented by T and P in the training data, and that is one explanation for terrestrial NPP not 

being retained in the equation with the lowest RMSE. The relationships between P, T and 

terrestrial NPP are, however, more complex than the statistics for the training data suggest, and 

the empirical relations between the three predictors in the training data are not necessarily 

representative of the extrapolation area or prediction periods. Thus, we assume the combination 

of terrestrial NPP, P and log10(Alake) to be more robust for extrapolations in space and time. 

Together, these predictors explain 56% (r2 = 0.56, Fig. 2) of the spatial variation in log10(pCO2). 

P has the strongest partial correlation coefficient (r = -0.535) followed by log10(Alake) (r = -

0.407) and terrestrial NPP (r = 0.360) (Table 4). The resulting prediction of boreal lake pCO2 

is given by the following equation: 

𝑙𝑜𝑔10 (𝑝𝐶𝑂2 [µ𝑎𝑡𝑚])  =   3.26 ± 0.07 − 0.0844 ± 0.0115 ∗ 𝑙𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 [𝑘𝑚2])  + 6.89 ±

1.11 ∗ 𝑁𝑃𝑃 [104𝑔 𝐶 𝑚−2𝑦𝑟−1] − 8.30 ±  0.84 ∗  𝑃 [103𝑚𝑚] (𝑟² =  0.56).  

where the ranges (±) represent the standard errors.  

Fig. 2 shows the scatterplot of observed versus (vs) predicted log10(pCO2), categorized by 

region. Siberia is represented by only a handful of grids with pCO2 data.  Despite this 

geographical bias, Fig. 2 shows that there is no consistent pCO2 prediction bias in the Siberian 

grids compared to those of Scandinavia and North America.
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Chapter 2 Table 2: Pearson correlation (r) between the variables tested  

  P log10(Alake) 
Wind 

speed 

Terrestria

L NPP 

Soil 

pH 
T 

log10( 

slope 
gradient) 

Elevatio

n 

Pop. 

density 
Runoff 

Soil org. 

C content 

% cover 

evergreen 
trees 

% cover 

mixed 
trees 

% cover 

cultivated 
areas 

% silt of 

soil 

% sand 

of  soil 

% clay of 

soil 

log10(pCO2)  -0.42*** -0.51*** 0.58*** 0.35*** -0.17* 0.34*** 0.11 -0.30*** 0.46*** -0.33*** 0.041 0.36*** 0.029 0.32*** -0.022 0.14 -0.18* 

P  -0.043 -0.25*** 0.28*** -0.11 0.33*** 0.057 0.30*** -0.25** 0.74*** -0.22** -0.42*** 0.30*** -0.17* 0.10 -0.093 -0.0018 

log10(Alake) 
  -0.42*** -0.35*** 0.092 -0.26*** -0.073 -0.13 -0.20** 0.10  0.17* 0.00 -0.15 -0.24** -0.19* -0.22** -0.015 

Wind speed    0.28*** 0.08  0.29*** -0.31*** -0.20** 0.29** -0.30*** -0.078  0.17* -0.08 0.25*** -0.28*** 0.25** -0.057  

Terrestrial 

NPP 
    -0.011 0.84*** -0.037  -0.24** 0.31*** 0.018  -0.47*** -0.15 0.33*** 0.22** -0.11 0.10 -0.08 

Soil pH      -0.07 -0.28*** -0.033 0.12 -0.14 -0.58*** -0.53*** -0.16* 0.26*** -0.25** -0.45*** 0.56*** 

T       -0.084  -0.41*** 0.43*** 0.10  -0.57*** -0.11 0.29*** 0.38*** -0.15* 0.033  -0.10  

log10(slope 

gradient) 
       0.33*** 0.03 0.29*** 0.042 -0.080 0.17* -0.061 0.51*** -0.24** -0.37*** 

Elevation         -0.48*** 0.15* -0.043 -0.23** 0.074 -0.30*** 0.15 0.026 -0.19* 

Pop. density          -0.084 -0.17* 0.08 -0.04 0.43*** -0.037 0.021 0.18* 

Runoff           -0.055 -0.30*** 0.12 -0.21** 0.27*** -0.13  -0.056 

Soil org. C 

content 
           0.64*** -0.25** -0.26*** 0.011  0.43*** -0.19* 

% cover 

evergreen 

trees 

            -0.42*** -0.10 -0.16* 0.43*** -0.34*** 

% cover 

mixed trees 
             0.06  0.34*** -0.16* 0.0092 

% cover 

cultivated 
areas 

              -0.052 0.012 0.15 

% silt of soil                -0.13 0.0034 

% sand of  

soil 
                -0.18* 

*** p<0.001 ** p<0.01, *p<0.05, p>0.05  



CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections 

59 

 

 

 

Chapter 2 Table 3: The top ten ranking multilinear regression equations composed of 

three drivers. Shown in descending order of ability (r2) to predict the dependent 

variable log10(pCO2) 

Predictors 𝑟2 
Root-mean-square error 

(RMSE) 

𝑙𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 [𝑘𝑚2]), P 
[mm],T [°C] 

0.59 0.16 

𝑙𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 [𝑘𝑚2]), P 
[mm], terrestriaL NPP [g C 

m-2 yr-1]  

0.56 0.17 

𝑙𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 [𝑘𝑚2]), P 
[mm], Wind speed [m s-1]  

0.53 0.18 

 
𝑙𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 [𝑘𝑚2]), Wind 

speed [m s-1], T [°C] 
 

0.53 
 

0.18 

𝑙𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 [𝑘𝑚2]), P 
[mm], Pop. density [Inh. 

Km-2] 
 

 
0.52 

 
0.18 

P [mm], terrestrial NPP [g 
C m-2 yr-1], Wind speed [m 

s-1] 
 

0.52 0.18 

𝑙𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 [𝑘𝑚2]), P 
[mm], Elevation [m] 

 
0.52 0.18 

Wind speed [m s-1], 
Elevation [m], log10(slope 

gradient [Degrees]) 
0.51 0.18 

Wind speed [m s-1], log10 
(slope gradient [Degrees]), 

% cover evergreen trees 
 

0.51 0.18 

𝑙𝑜𝑔10(𝐴𝑙𝑎𝑘𝑒 [𝑘𝑚2]), Wind 
speed [m s-1],% cover 

evergreen trees 
0.50 0.18 
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Chapter 2 Figure 2: Observed vs predicted log10(pCO2 [μatm]) for model training (168 grids) 

categorised by region with 95% prediction interval (dashed lines) 

 

The regression model was validated with 131 of the discarded grids from Scandinavia. The 

resulting scatterplot (Fig. 3) has a slope of 1.052 and an intercept of -0.148, suggesting that 
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r = 0.746, p = 0.0000; r2 = 0.556

Chapter 2 Table 4: Retained predictors with b-estimates, associated standard 

errors, and partial correlations to the dependent variable log10(pCO2) 

Predictor b-Estimate 
Standard 

Error  
 p-Value  

Partial 
Correlation 

Intercept 3.26 0.0696 <0.0001   

log10(Alake) -0.0844 0.0115 <0.0001 -0.407 

Terrestrial NPP [10⁴ 
g C m-2   yr-1] 

6.89 1.11 <0.0001 0.360 

P [10³ mm] -8.30 0.841 <0.0001 -0.535 
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there is minimal prediction bias. Based on the multiple regression model described above, lake 

area weighted mean pCO₂ for the BF land cover region is estimated to be 966 µatm (Fig. 4 a) 

with an uncertainty range of 678- 1325 µatm corresponding to the 5th and 95th percentiles. The 

range of uncertainty was obtained from the Monte-Carlo analysis, outlined in the methods.  

Mean pCO₂ varies inversely with lakes size category (Table 5). Indeed, our estimate of mean 

pCO₂ for the smallest lake size category (<0.1km2) of 1558 µatm (1110-2208) is approximately 

twice that of our estimate for the largest category (>10km2) of 789 µatm (563-1120).  

 

Chapter 2 Figure 3: Observed vs predicted log10(pCO2 [μatm]) for model validation (131 grids) 

with 95% prediction interval (dashed lines) 

2.3.2 Estimates of FCO2 for present-day conditions 

The map of FCO2 (Fig. 4c) show a complex spatial pattern reflecting the high spatial variation 

of both pCO₂ (Fig. 4 a) and Alake (Fig. 4 b). Integrated over the BF region, we estimated a total 

FCO2 of 189 Tg C yr-1 (range of 74-347 Tg C yr-1) while for the entire 50°- 70° N latitudinal 
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band (Fig. S12) we estimated a total evasion of 272 (115-487) Tg C yr-1. Canada alone showed 

the highest FCO2 with 137 (55-250) Tg C yr-1 (Table S2), mainly because Canada has the 

greatest total Alake. We found a relatively even contribution for the four different lake size 

categories to total FCO2, and this is a reflection of the contrasting relationships between lake 

area and pCO₂, and lake area and gas exchange velocity k. While the smallest lakes had the 

highest estimated pCO₂ values, they also had the lowest values of k, and this pattern is reversed 

in the largest lakes (Table 5). 

 

Chapter 2 Figure 4: Predicted maps of (a) pCO2, (b) Alake, and (c) FCO2 for the BF land cover 

region 
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Chapter 2 Table 5; pCO2, FCO2, total Alake and k values in relation to lake size classes for the 

BF land cover region 

Lake size 
class 

pCO2 (µatm) FCO2 (Tg C yr-1) 
 

Total Alake 

(km²) 

 

Mean k (m d-

1) 

<0.1km2 1558 (1110-2208) 38.17 (18.64-65.00) 208,008 0.63 

0.1-1km2 1237 (890-1739) 52.36 (9.38-87.1) 282,434 0.87 

1-10km2 1020 (734-1434) 44.80 (19.54-79.34) 286,624 0.99 

>10km2 789 (563-1120) 53.96 (9.91-116.5) 570,583 1.27 

2.3.3 Projections of pCO2 and FCO2  

We used our empirical model and projections of terrestrial NPP and P to estimate the change 

in BF lake pCO2 and FCO2 over the 21st century, under two future GHG emission scenarios, 

namely the lowest (RCP2.6) and highest (RCP8.5) emission scenario of the IPCC. 

Additionally, we used future projections of T, to adjust KH and k, and in turn FCO2. Based on 

the multi-model mean, we estimated that annual terrestrial NPP will increase by 135% from 

282 to 664 g C m-2 yr-1 (Fig. 5 b) by 2100 under RCP8.5, while we estimated that P (April-Nov 

monthly mean) will increase by 20% from 51 mm to 61 mm (Fig. 5 d). For the years 2030 and 

2050 respectively, we estimated that terrestrial NPP will increase by 49% and 67% and that P 

will increase by 5% and 10%. Under RCP2.6 (Fig. 5 a, c), we estimated a 45% increase in 

terrestrial NPP by 2050 to 408.5 g C m-2 yr-1 before reducing slightly to 404 g C m-2 yr-1 by 

2100. P is predicted to increase by just 7.5% to 54.8 mm for both the years 2050 and 2100. In 

both scenarios (RCP2.6 and 8.5), and across all three time periods (2030, 2050 and 2100), all 

four models (CanESM2, HadGEM2-ES, IPSL-CM5A-LR & MPIESM-LR) project an increase 

in both terrestrial NPP and P across the BF region, relative to the year 2000 (Fig. 5 a-d). The 

HadGEM2-ES model consistently projects the largest increase in terrestrial NPP while the 

CanESM2 model consistently projects the smallest increase. In contrast, the CanESM2 model 

projects the largest increase in P across all scenarios and time periods, with the exception of 

RCP2.6 for the year 2030 (for which HadGEM2-ES projects the highest P). In all our 

projections, we have assumed that Alake will remain constant. 
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Chapter 2 Figure 5:Projected BF terrestrial NPP under scenario (a) RCP2.6 (b) RCP8.5 and P under scenario (c) RCP2.6 (d)RCP8
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Under scenario RCP8.5, both pCO2 (Table S3) and FCO2 (Fig. 7) are predicted to increase 

substantially across the BF region, peaking at 2198 (1303-3761) µatm and 392 (96.5-922) Tg 

C yr-1 respectively for the year 2100. This represents a 127.5% increase in pCO2 and a 107% 

increase in FCO2. For the years 2030 and 2050 respectively, we estimate that pCO2 will 

increase by 31% and 48% and that FCO2 will increase by 37% and 49%. For RCP2.6 pCO2 

and FCO2 (Table S3, Fig. 6) are estimated at 1230 (739-1981) µatm and 260 (82.9-537) Tg C 

yr-1 respectively for the year 2100. This represents a 27% increase in pCO2 and a 38% increase 

in FCO2.  Note that the increases in pCO2 and FCO2 are not equivalent, largely due to the fact 

that the former is a reflection of absolute pCO2 while the latter is calculated from delta pCO2. 

The projected increase in lake CO2 evasion is mainly driven by the substantial projected 

increase in the positive driver terrestrial NPP over the 21st century. In contrast, the projected 

increase in P, a negative driver of pCO₂ in our model, is very small. The smaller increase in 

both pCO₂ and FCO2 predicted under the RCP2.6 scenario is reflected in the smaller increase 

in terrestrial NPP (Fig. 5) under this scenario. By applying a linear function between our FCO2 

values for 2000, 2030, 2050 and 2100, we estimate a cumulative CO2 evasion flux of around 

29 Pg C from boreal lakes to the atmosphere over the course of the 21st century, under RCP8.5. 

Under RCP2.6, we estimate a smaller cumulative flux of 24 Pg C. See Table S1 in Supporting 

information for more detailed results of future FCO2 projections relating to different options 

for the adjustment of k and KH. 
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Chapter 2 Figure 6:Spatially resolved (0.5°) predicted change in CO2 evasion, ΔFCO2 (from a 

year 2000 baseline) under scenario RCP2.6 for the year (a) 2030, (b) 2050 and (c) 2100 for the 

BF land cover region. 

 

 

Chapter 2 Figure 7:Spatially resolved (0.5°) predicted change in CO2 evasion, ΔFCO2 (from a 

year 2000 baseline) under scenario RCP8.5 for the year (a) 2030, (b) 2050 and (c) 2100 for the 

BF land cover region. 

ΔFCO2 = 48 Tg C yr-1 

 

ΔFCO2 = 63 Tg C yr-1 

 

ΔFCO2 = 71 Tg C yr-1 

 

ΔFCO2 = 70 Tg C yr-1 

ΔFCO2 = 92 Tg C yr-1 

 

ΔFCO2 = 203 Tg C yr-1 

 



CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections 

67 

 

2.4. Discussion 

2.4.1 Drivers of pCO2 and FCO2 spatial variability 

We found significant relationships between lake pCO2 and a variety of environmental drivers 

(Table 2). The majority of these relationships concur with existing literature, i.e. the observed 

positive correlation between terrestrial NPP and pCO2 is in line with previous studies, which 

report on CO2 supersaturation in boreal and temperate lakes as a result of allochthonous inputs 

of organic carbon (OC) and inorganic carbon (IC) from the catchment (Maberly et al., 2013; 

Weyhenmeyer et al., 2015; Wilkinson et al., 2016). Similarly, the presence of boreal coniferous 

forest has previously been shown to exert a strong positive control on pCO2 by inducing a net 

heterotrophic state from elevated DOC concentrations (Hanson et al., 2003; Sobek et al., 2007; 

Chmiel et al., 2016). There is less of a clear consensus regarding the effects of temperature and 

wind. Several previous studies have found pCO2 and organic C mineralization in lakes to be 

strongly positively linked to temperature (Marotta et al,. 2009; Gudasz et al., 2010; Kosten et 

al., 2010), while other studies have found only a weak relationship (Sobek et al., 2005; Sobek 

et al., 2007; Lapierre et al., 2015). In our study, temperature had a moderately positive effect 

on lake pCO2, similar to that of terrestrial NPP, and indeed the two are highly intercorrelated 

(r = 0.84). At present, it is not clear in how far our observed positive relationship between T 

and pCO2 is related to increased aquatic respiration or other in-lake processes or to increased 

terrestrial NPP. Since terrestrial NPP was almost equally powerful in explaining pCO2 in lakes 

as T, we built our predictive model on terrestrial NPP to get a better mechanistic understanding. 

Wind speed has previously been shown to exert a strong negative control on pCO2 in reservoirs 

(Morales-Pineda et al., 2014), the likely mechanism being higher wind speeds leading to higher 

FCO2 (Cole & Caraco, 1998; Reed et al., 2012; Vachod & Praire, 2013) and in turn a decrease 

in pCO2. In contrast, our study revealed a strong positive correlation between wind speed and 

lake pCO2. This could be explained by higher wind speeds promoting the vertical mixing of 
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waters, especially during summer in lakes where a thermocline has formed. Nevertheless, wind 

speed was not retained for the empirical model, because the b-estimate was associated with a 

very high standard error (>20% of the b-estimate).  

In terms of the negative controls of pCO2, it is well established in the literature that smaller 

lakes generally have higher pCO2 values, due to their proportionately greater surface area in 

contact with the catchment and greater allocthonous C inputs per unit volume (Sobek et al., 

2003; Kortelainen et al., 2006; Humborg et al., 2010; Catalan et al., 2016). Perhaps the most 

interesting result is the strong negative control of P on pCO2. Although, previous large-scale 

studies have found a positive relationship between P and open water pCO2 (Sobek et al., 2003; 

Rantakari & Kortelainen, 2005), a recent temporal study over a 17-year study period found a 

negative or no relation at all between precipitation and pCO2 in boreal inland waters (Nydahl 

et al., 2017). Nydahl et al. (2017) suggested that increased precipitation results in a dilution of 

CO2 concentrations in inland waters due to an altered balance between surface and CO2-rich 

groundwater flow. In addition, P induced increased surface water runoff can cause a faster 

water flushing through the landscape giving less time for in situ CO2 production in inland 

waters. It is however important to keep in mind that P is highly intercorrelated with a number 

of the other variables tested, most notably elevation, % of coniferous tree cover per grid, 

population density and wind speed. As such, it may be that the relationship with P is also 

representing the effects of these environmental and physical drivers on pCO2. 

Our maps show a high degree of spatial variation and a complex pattern of pCO2, reflecting 

the fact that no single driver is dominant. One region where a clear divergence in pCO2 can be 

observed is Scandinavia. For instance, we estimated an average area weighted pCO₂ of 949 

(637-1345) µatm for Sweden and a substantially smaller value of 552 (372-779) µatm for 

Norway (Table S2), as a result of the differing topography and climate found in the two 

countries. Due to its close proximity to the sea and relatively high mean elevation, Norway 
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receives a substantially greater amount of monthly precipitation (87 mm as a monthly mean 

over the April-November period) compared to Sweden (58 mm as a monthly mean over the 

April-November period), and a lower annual terrestrial NPP of 208 g C m−2 yr−1 compared to 

Sweden’s total of 373 g C m−2 yr−1 (Fig. S14 a, c). Another region where a relatively strong 

pattern can be seen is in Quebec, where low pCO2 (Fig. 4 a) coincides with low terrestrial NPP 

(Fig. S14 a) and relatively high precipitation (Fig. S14 c). The spatial pattern in FCO2 is even 

more complex, because the hotspots of pCO2 generally do not coincide with those of Alake.  

2.4.2 Comparison to previous global studies 

In Table 6, we compare our results of FCO2 and pCO2 to values found in the literature, averaged 

across the boreal region. For an extended table with additional regional breakdowns of results, 

please refer to Table S2 of Supporting information. Our estimate of total FCO2 of 189 (74-347) 

Tg C yr-1 from lakes in the BF region is substantially higher (by a factor of nearly 2.5) than the 

estimate of 79 Tg C yr-1 proposed by Raymond et al. (2013) for the same region. Our estimate 

of FCO2 over the 50-70°N latitudinal band is also higher than the two previous estimates of 

Raymond et al. (103 Tg C yr-1) and Aufdenkampe et al. (110 Tg C yr-1) by a comparable factor.  

There are several explanations for our relatively high estimates of FCO2. One substantial 

difference in our study is the incorporation of the new GLOWABO lake database. Across the 

BF region, the GLOWABO database contains a total Alake of 1,350,353 km2, compared to the 

total of 931,619 km2 estimated by Raymond et al. (2013). We calculated an area specific FCO2 

of 140 g C m-2 yr-1, which is still 64% larger than that of Raymond et al. (2013). Indeed using 

Raymond’s value of total Alake, we would calculate a total FCO2 of 130 Tg C yr-1. Therefore, 

total Alake is not the only reason for the substantial difference in FCO2 between the two studies. 

The greater number of the smallest, high pCO2 lakes in GLOWABO compared to previous 

methods (see Verpoorter et al., 2014) is another plausible explanation for our high estimate.  
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In comparison to Raymond et al. (2013), we also used a substantially different methodology, 

as well as different data to train our model. We used additional boreal pCO2 in the training of 

our model from Canada (Lapierre & del Giorgio, 2012), Sweden (Weyhenmeyer et al., 2012) 

and Siberia (Shirokova et al., 2013). Our methodology for estimating k also differed compared 

to previous studies. We used the same two methodologies for deriving k as Raymond et al. 

(2013) but added an additional method outlined in Vachon and Prairie (2013), which led to 

slightly higher k values.   

Using only the two methods for calculating k (Cole & Caraco, 1998; Read et al., 2012) 

used in Raymond et al. (2013) we obtain a total BF evasion of 150 (67-258) Tg C yr-1, which 

gives an area specific CO2 evasion rate of 111 g C m-2 yr-1. If we multiply this flux density by 

the total Alake from Raymond et al. (2013) we reach a total evasion of 104 Tg C yr-1. Thus we 

conclude that the remaining discrepancy of 25 Tg C yr-1 between our results and those of 

Raymond et al. is due to methodological and pCO2 data differences. 

Chapter 2 Table 6: pCO2, FCO2, total Alake and k values compared to previous studies 

Region 
pCO2 

(µatm) 
FCO2 (Tg C yr-1) Total Alake (km²) Mean k (m d-1) Source 

BF 

1278 

Area 

weighted 

966 (678- 

1325) 

189 (74-347) 1,350,353 0.86 This study 

BF 790 79 931,619 0.82 

Raymond et al., 

2013 

(INTERPOLATED) 

50-70°N 

1305 

Area 

weighted 

1006 (715-

1366) 

272 (115-487) 1,751,985 0.88 This study 
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50-70°N 812 103 1,194,701 0.84 

Raymond et al., 

2013 

(INTERPOLATED) 

50-90°N* 1100 110 
80,000-

1,650,000 
0.96 

Aufdenkampe et al., 

2011 

 

2.4.3 Sources of uncertainty 

2.4.3.1. Upscaling  

Using a statistical model to extrapolate pCO2 in regions of minimal data coverage is suitable if 

the variation in the environmental parameters in the predictor equation is similar in the training 

areas and in the extrapolated areas. This condition is fulfilled in our study (see Fig. S6-S10 in 

Supporting information) where 99.6% of the variation in extrapolated terrestrial NPP and 

98.8% of the variation in extrapolated P lies within the range recorded in the grids used for 

training. We are thus confident that we are not extrapolating too far beyond the statistical model 

boundaries. However, it is important to note that the mean values of both terrestrial NPP and 

P are substantially higher over the grids used in training the data compared to the mean values 

over the entire extrapolated region. For the training data mean terrestrial NPP and P are 477 g 

C m-2 yr-1 and 71 mm respectively, compared to 282 g C m-2 yr-1 and 51 mm across the BF land 

cover region. 

Our mean estimated pCO2 across the extrapolated BF region of 1278 µatm is higher than the 

value of 1133 µatm observed in our training data but more importantly, the vast majority of the 

variation in our extrapolated pCO2 lies within the range of observed pCO2. While the minimum 

pCO2 of 25.6 µatm over our extrapolated grids is lower than the minimum of 152 µatm in the 

observed grids, the maximum value over our extrapolated grids is also lower (Fig. S3 and Fig. 

S4 of Supporting information), resulting in a smaller pCO2 range over the extrapolated grids.  

Moreover, reducing the number of grids in our analysis from 584 to 168 could have resulted in 

certain geographical/ climatic areas being underrepresented but grids from the vast majority of 
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boreal latitudes remained after this edit and therefore we are confident that most of the variation 

in the original data is retained. In addition, the variation in pCO2, as well as terrestrial NPP and 

P, is similar across the 584 grids and the 168 grids (Fig. S3-S11 of Supporting information). 

In calculating annual FCO2 across the boreal region, we multiplied our daily evasion estimates 

by number of days per year irrespective of location and associated ice cover duration. This 

choice is guided by the fact that significant CO2 accumulation has been previously reported 

under ice covered lakes and very high emissions during ice melt (Striegl et al., 2001). Such 

findings concur with our own preliminary analysis of the seasonality of pCO2 at individual 

sampling locations, where peak pCO2 values were often measured during spring before April 

and at temperatures below 4 C. These conditions were excluded from our analysis as we 

restricted our dataset to samples measured at a water temperature greater than 4 °C and between 

the months of April to November. Moreover, a disproportionate percentage (45%) of our raw 

data was sampled during the summer (July-Sept) and this data had a median value of 997 µatm. 

We can compare this to the spring (April-June) data with a median value of 1416 µatm, which 

comprised just 20% of our data, or the annual median value of 1478 µatm (all data samples 

including winter and < 4 C), and conclude that the data used in our final analysis likely leads 

to a conservative estimate of pCO2. This choice compensates somewhat for the lack of 

accounting for variable ice cover duration in our estimation of FCO2. As discussed in the 

methods, we only included pCO2 data with a pH of > 5.4 in order to filter out unreliable data. 

However, this could also lead to underestimation of pCO2. Note that Raymond et al., (2013) 

used the same approach, meaning that the results from both studies can be compared.  

2.4.3.2 Lake area 

There are a number of limitations associated with GLOWABO. Despite the use of a number of 

filters to minimize errors, some false detection of lakes due to cloud and mountain shadow is 
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unavoidable. Other sources of errors include the elucidation of lakes from large rivers and 

wetlands.  

While these limitations are significant, validation of GLOWABO against a high resolution map 

of Sweden (Verpoorter et al., 2012), an area which encounters all of the aforementioned 

problems, achieved a performance index of 91% for lake area, while lake number differed by 

less than 3% (see Verpoorter et al., 2012 for further discussion).  

2.4.3.3 Gas exchange velocity k 

Gas exchange velocity k represents one of the largest sources of uncertainty. We assessed this 

uncertainty by using three different methods to calculate k and we reported a best estimate as 

the average of these three k quantification methods. We further accounted for this uncertainty 

by incorporating k into the Monte Carlo analysis. Additionally, in order to assess the 

uncertainty associated with the variation in k alone, we undertook an extra Monte Carlo 

analysis in which we only accounted for variation in k (that is, uncertainty associated with 

pCO2 calculation was excluded). Based on this analysis, the mean FCO2 is 185 Tg C yr-1 for 

the BF region, very close to the 189 Tg C yr-1 estimated in the original Monte Carlo analysis. 

The range of uncertainty is only moderately smaller; we estimate 5th and 95th percentile FCO2 

at 98 Tg C yr-1 and 297 Tg C yr-1 respectively, compared to the original range of 74-347 Tg C 

yr-1. Thus, we conclude that k is indeed the largest source of uncertainty in our calculation of 

FCO2.  

2.4.3.4 Future changes in lake CO2 evasion 

Our study does not account for future changes in the extent of the boreal forest, predicted as a 

result of increasing temperature (Koven, 2013; Gauthier et al., 2015). However, recent research 

estimating future changes in the boreal C stock under scenario RCP4.5, suggests that any C 

gained from northern expansion of the boreal forest is likely to be offset by loss from southern 

boreal retreat, and thus little net change is predicted (Gauthier et al., 2015).  Finally, our study 
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does not account for the future impact of permafrost thaw, which will become an increasingly 

important source of C. Drake et al. (2015) report that by 2100, between 5 and 10 Tg C will be 

released annually from Yedoma soils alone.  

2.4.4 Present and future carbon budget for the boreal region 

This study is the first to spatially resolve lake pCO2 and FCO2 across the boreal region, 

moreover using only environmental drivers derived from freely available geodata. The 

resolution of our maps is compatible with most global land surface and inversion models (Ciais 

et al., 2013), and thus could potentially be used for validation purposes. High resolution 

estimates of C fluxes such as those reported here are crucial in deriving more reliable regional 

C budgets, particularly along the land-ocean aquatic continuum (LOAC) where large 

uncertainties remain (Regnier et al., 2013).  Figure 8 integrates our results within a C budget 

for the boreal region using previous spatially resolved estimates of terrestrial NPP (Zhao et al., 

2005), FCO2 in rivers (Lauerwald et al., 2015), C burial in lake sediments (Heathcote et al., 

2015), lateral C exports to the ocean (Mayorga et al., 2010), C accumulation in forests (Pan et 

al., 2011), and emissions from fires (van der Werf et al., 2017, in review). Our updated budget 

suggests that lakes are the most significant contributor to the LOAC budget. This is largely due 

to their substantially greater surface area; we estimate that it is 11 times that of rivers in the BF 

region.  Moreover, we estimate that in the order of 3-5 % of the C fixed by terrestrial vegetation 

(terrestrial NPP) is leaking each year into inland water bodies. This value is comparable to the 

global estimate of 3.2% proposed by Regnier et al., (2013) and the 5% recently calculated for 

the Amazon basin by Lauerwald et al. (2017), which ignores the lateral mobilization of POC. 

Interestingly, the magnitude of the LOAC C flux is of the same order as the mean C storage in 

the boreal forest biomass and soils combined. It is also greater than the vertical flux as a result 

of boreal forest fires (van der Werf et al., 2017, in review) and the lateral C flux from harvested 

wood (Pan et al., 2011). Our findings imply that the leakage through the LOAC considerably 



CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections 

75 

 

reduces the C accumulation in boreal forests. This could particularly be true for Canada where 

our estimate of lake FCO2 alone of 137 Tg C yr-1 is substantially larger than the mean (1990-

2007) C storage of 20 Tg C yr-1 for the Canadian boreal forested proposed by Pan et al., (2011).  

Our budget is also likely to be conservative given that we do not account for methane (CH4) 

fluxes. A recent study (Rasilo et al., 2015) of 224 lakes in Quebec found that as much as 25% 

of the emissions from lakes, in terms of atmospheric warming potential, are in the form of CH4. 

Moreover, there are a small number of additional C fluxes contributing to the Net Ecosystem 

Exchange budget, such as emissions associated with the consumption of crop products, which 

we do not include but are of relatively minor importance (Ciais et al., in review).  

We estimate that lake pCO₂ and FCO2 will increase substantially over the 21st century relative 

to our present-day estimates. Under RCP8.5, we predict a 37%, 49% and 107% increase in 

boreal lake FCO2 by 2030, 2050 and 2100 respectively, amounting to a cumulative perturbation 

of the lake to atmosphere CO2 flux of about 9 Pg C over the 21st century. This is a significant 

perturbation, of a similar magnitude to predicted future changes in boreal soil organic C stocks 

in some land C models (Nishina et al., 2014). Our projections are largely driven by increases 

in terrestrial NPP of 46%, 67% and 135% over the same period. Interestingly, even under the 

GHG scenario RCP2.6, we predict a 25%, 33% and 38% increase in boreal lake FCO2 by 2030, 

2050 and 2100 respectively. This suggests that a substantial strengthening of the CO2 evasion 

flux from boreal lakes is expected irrespective of the emission scenario. Our results concur 

with those of Larsen et al. (2011), which projected a 65% increase in TOC concentration in 

Norwegian lakes by 2100 under the superseded IPCC B2 scenario, an intermediate GHG 

emission scenario. In our study, NPP increases at an equivalent rate while the increase in 

precipitation is much smaller, meaning that the proportion of NPP lost from lakes to the 

atmosphere remains relatively constant at approximately 3% under both scenarios.  Finally, our 

estimates of future FCO2 are likely to be conservative, due to our lack of accounting for the 
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impact of permafrost thaw on remobilizing, old labile C.  Accounting for this substantial source 

of future C should be prioritized in future studies of boreal and high latitude regions, and may 

require the explicit representation of these processes in mechanistic Earth System models.  

 

Chapter 2 Figure 8 Updated carbon budget along the land-ocean aquatic continuum (LOAC) 

for the boreal region. Units are Tg C yr-1.  Ref. 1- Aufdenkampe et al. (2011), ref. 2- Lauerwald 

et al. (2015), ref. 3- Raymond et al. (2013), ref. 4** (this study), ref. 5- Mayorga et al. (2010), ref. 

6- Heathcote et al. (2015), ref. 7- Zhao et al. (2005), ref. 8- Pan et al. (2011), ref. 9- van der Werf 

et al. (2017, in review). This scheme does not include estuarine C fluxes which are relatively 

minor in this region (Laruelle et al., 2013), or the C fluxes between lakes and rivers for which no 

estimate could be found for the boreal region. 

2.5 Supporting information 

2.5.1. Comparison to previous regional studies 

As with the boreal region as a whole, our estimates of FCO2 for individual countries are higher 

than previous values in the literature. For Sweden, we estimated a total FCO2 of 7.9 (2.8-15.3) 

Tg C yr-1, approximately 4.5 times greater than the value of 1.74 Tg C yr-1 estimated in 

Humborg et al. (2010) and roughly 3 times greater than the value of 2.55 Tg C yr-1 that is 

obtained by interpolating the results of Raymond et al. (2013) over the same area.  In Humborg 

et al. (2010), a low and uniform k value for lakes of 0.21 m d-1 was used, as well as a lower 
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total lake area (Table S2). Despite our smaller average estimate for pCO2, the combination of 

higher and spatially variable k values and a larger lake surface area results in a substantially 

higher FCO2 for Sweden. Interestingly, our estimate of total FCO2 for Norway of 0.84 (0.53-

2.61) Tg C yr-1 is very close to the downscaled value of 0.81 Tg C yr-1 by Raymond et al. 

(2013). The substantially lower average pCO2 predicted in our study is here balanced by our 

larger total lake surface area. In fact, Raymond et al. (2013) estimated a very similar average 

pCO2 for Norway and Sweden, 830 and 812 µatm respectively, while our spatially resolved 

estimate for Sweden is almost twice that of Norway (Table S2). 

Supporting tables and figures 

Chapter 2 Table S 1: Projected total annual FCO2 for the boreal forest region by model configuration 

Model 

configuration 

RCP 2.6 RCP 8.5 

 2030 2050 2100 2030 2050 2100 

FCO2 (Tg C yr-1) 

 

KH and gas 

exchange velocity 

k adjusted for 

future temp. 

237  

(78.6-478) 

252  

(83.3-504) 

260 

(82.9-537) 

259 

(89.1-516) 

281 

(91.1-578) 

392 

(96.5-922) 

No adjustment of 

KH or gas 

exchange velocity 

k (present day 

values) 

246 

(81-509) 

262 

(85-542) 

270 

(85-572) 

269 

(91-553) 

293 

(94-619) 

416 

(101-989) 

 

Only KH adjusted 

for future temp. 

230 

(76.5-462) 

242 

(80.3-482) 

245 

(78.5-504) 

251 

(86.5-497) 

262 

(85.1-536) 

329 

(81.0-768) 

Only gas exchange 

velocity k adjusted 

for future temp. 

237  

(79.3-477) 

255  

(84.9-509) 

268 

(86.4-553) 

261 

(90.1-517) 

295 

(96.5-604) 

466 

(116-1,108) 

 

  



CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections 

78 

 

Chapter 2 Table S 2: pCO2, FCO2, total Alake and k values compared to previous studies 

Region 
pCO2 

(µatm) 
FCO2 (Tg C yr-1) Total Alake (km²) Mean k (m d-1) Source 

BF 

1278 

Area 

weighted 

966 (678- 

1325) 

189 (74-347) 1,350,353 0.86 This study 

BF 790 79 931,619 0.82 

Raymond et al., 

2013 

(INTERPOLATED) 

50-70°N 

1305 

Area 

weighted 

1006 (715-

1366) 

272 (115-487) 1,751,985 0.88 This study 

50-70°N 812 103 1,194,701 0.84 

Raymond et al., 

2013 

(INTERPOLATED) 

50-90°N* 1100 110 
80,000-

1,650,000 
0.96 

Aufdenkampe et al. 

2011 

Sweden 

1148 

Area 

weighted 

949 (637-

1345) 

7.9 (2.8-15.3) 50,608 1.05 This study 

Sweden 1288 1.7  33,301 0.21 
Humborg et al., 

2010 

Sweden 812 2.6 32,212 0.91 
Raymond et al., 

2013 

Norway 

Area 

weighted 

552 (372-

779) 

0.84 (0.53-2.61) 23,565 1.04 This study 

Norway 830 0.81 9,378 0.88 
Raymond et al., 

2013 

Finland 

Area 

weighted 

973 (669-

1355) 

6.56 (2.59-12.2) 46,175 0.95 This study 
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Finland 753 1.98 31,861 0.92 
Raymond et al., 

2013 

Russia 

 

Area 

weighted 

1024 (724-

1396) 

104 (45-186) 695,333 0.81 This study 

Russia 832 42.4 378,535 0.7 
Raymond et al., 

2013 

Canada 

 

Area 

weighted 

952 (677-

1293) 

137 (55-250) 879,741 0.93 This study 

Canada 816 80 920,920 0.81 
Raymond et al., 

2013 
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Chapter 2 Table S 3: Projected area weighted mean pCO2 and total annual FCO2 by region 

 

Region RCP 2.6 RCP 8.5 

 2030 2050 2100 2030 2050 2100 

pCO2 (µatm) 

 

BF 1183 

(744-1849) 

1238  

(762-

1938) 

1230 

(739-1981) 

1270  

(792-1982) 

1428 

(890-2260) 

2198  

(1303-

3761) 

50-70°N 1198  

(766-1849) 

1236 

(773-

1925) 

1249  

(757-2034) 

1277 

(806-1987) 

1425  

(904-2245) 

2219  

(1313-

3938) 

Sweden 1044 

(659-1601) 

1105 

(606-

1697) 

1064 

(629-1695) 

1232 

(713-2023) 

1283 

815-1950) 

1950 

(1302-

2960) 

Norway 631 

(407-952) 

659 

(426-

1036) 

629 

(370-984) 

724 

(440-1121) 

808 

(533-1188) 

1269 

(885-1842) 
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Chapter 2 Figure S 1: Scatterplot of predicted log10 (pCO2 [µatm]) vs model residuals 
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Chapter 2 Figure S 2:Histogram of regression model residuals (observed-predicted 

log10(pCO2[uatm])) 
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Chapter 2 Figure S 3:Histogram showing frequency of observed average pCO2 (µatm) values 

(training data) 
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Chapter 2 Figure S 4:Histogram showing frequency of extrapolated average pCO2 (µatm) 

values for BF region 



CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections 

84 

 

0%

2%

12%

17%

15%

11%

12%

8%

7%

6%

4%

1% 1%

1%
1%

0% 0%
1%

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Average pCO2 (μatm)

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

N
o
. 
o
f 
o
b
s
e
rv

a
tio

n
s

N = 584, Mean = 1203.2, StdDv = 701.1, 

Max = 8351.1, Min = 152

 

2%
1%

8%

11%

26%

39%

10%

3%

-100 0 100 200 300 400 500 600 700 800 900 1000

NPP (g C m-2 yr-1)

0

10

20

30

40

50

60

70

N
o
. 
o

f 
o
b
s
e
rv

a
ti
o

n
s

N = 168, Mean = 477.1, 
StdDv = 132.2, 
Max = 746.9, Min = 50.5

 

Chapter 2 Figure S 6:Histogram of observed terrestrial net primary productivity (g C m-2 yr-1) 

(training data) 

 

 

Chapter 2 Figure S 5:Histogram showing frequency of observed average pCO2 (µatm) values 

(training data- original 584 grids) 
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 Chapter 2 Figure S 7:Histogram of extrapolated terrestrial net primary productivity (g C m-2 

yr-1) for BF region 
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Chapter 2 Figure S 8:Histogram of observed terrestrial net primary productivity (g C m-2 yr-1) 

(training data- original 584 grids) 
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Chapter 2 Figure S 9:Histogram of observed precipitation (April-Nov. monthly mean [mm]) 

(training data) 



CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections 

87 

 

2%

27%

48%

16%

6%

1% 0% 0% 0% 0% 0% 0% 0%

-20 0 20 40 60 80 100 120 140 160 180 200 220 240 260

Precipitation (mm)

0

1000

2000

3000

4000

5000

6000

7000

N
o

. 
o

f 
o

b
s
e

rv
a
ti
o

n
s

N = 13308, Mean = 51.0, 
StdDv = 20.4, Max = 240.1, Min = 11.4

 

Chapter 2 Figure S 10:Histogram of extrapolated precipitation (April-Nov. monthly mean 

[mm]) for BF region 
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 Chapter 2 Figure S 11:Histogram of observed precipitation (April-Nov. monthly mean [mm]) 

(training data- original 584 grids) 
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Chapter 2 Figure S 12:Predicted maps of (a) pCO2, (b) Alake, and (c) FCO2 for the region of 50-70° 

latitude 

Chapter 2 Figure S 14:Map of boreal forest land cover taken from Potapov et al. (2008) 

Chapter 2 Figure S 13:Maps of retained drivers (a) terrestrial NPP, (b) adjusted mean log10 lake 

area (km2), (Alake), and (c) precipitation (monthly mean of April-Nov) for the BF land cover 

region 
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Chapter 2 Figure S 15:Spatially resolved (0.5°) multi-model mean predicted change in 

terrestrial NPP, ΔNPP (from a year 2000 baseline) under scenario RCP8.5 for the year (a) 2030, 

(b) 2050 and (c) 2100 for the BF land cover region 

 

Chapter 2 Figure S 16:Spatially resolved (0.5°) multi-model mean predicted change in 

precipitation, Δprecipitation (from a year 2000 baseline) under scenario RCP8.5 for the year (a) 

2030, (b) 2050 and (c) 2100 for the BF land cover region 
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3. Aquatic carbon fluxes dampen the overall variation of net ecosystem 

productivity in the Amazon basin: An analysis of the interannual 

variability in the boundless carbon cycle 
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An analysis of the interannual variability in the boundless carbon cycle. Global Change 

Biology. 

Abstract 

The river-floodplain network plays an important role in the carbon (C) budget of the Amazon 

basin, as it transports and processes a significant fraction of the C fixed by terrestrial vegetation, 

most of which evades as CO2 from rivers and floodplains back to the atmosphere. There is 

empirical evidence that exceptionally dry or wet years have an impact on the net C balance in 

the Amazon. While seasonal and interannual variations in hydrology have a direct impact on 

the amounts of C transferred through the river-floodplain system, it is not known how far the 

variation of these fluxes affects the overall Amazon C budget.  

Here, we introduce a new wetland forcing file for the ORCHILEAK model, which improves 

the representation of floodplain dynamics and allows us to closely reproduce data-driven 

estimates of net C exports through the river-floodplain network. Based on this new wetland 

forcing and two climate forcing datasets, we show that across the Amazon, the percentage of 

NPP lost to the river-floodplain system is highly variable at the interannual timescale and wet 

years fuel aquatic CO2 evasion. However, at the same time overall net ecosystem productivity 

(NEP) and C sequestration is highest during wet years, partly due to reduced decomposition 

rates in water-logged floodplain soils. It is years with the lowest discharge and floodplain 

inundation, often associated with El Nino events, that have the lowest NEP and the highest 
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total (terrestrial plus aquatic) CO2 emissions back to atmosphere. Furthermore, we find that 

aquatic C fluxes display greater variation than terrestrial C fluxes, and that this variation 

significantly dampens the interannual variability in NEP of the Amazon basin. These results 

call for a more integrative view of the C fluxes through the vegetation-soil-river-floodplain 

continuum, which directly places aquatic C fluxes into the overall C budget of the Amazon 

basin. 

3.1. Introduction 

The land-ocean aquatic continuum (LOAC) is now well established as an important component 

of the global carbon (C) cycle (Ciais et al., 2013). Atmospheric C fixed in terrestrial ecosystems 

and wetlands can be lost through respiration, and stored in biomass and soil, but can also be 

transferred laterally to the LOAC as dissolved organic carbon (DOC), particulate organic 

carbon (POC) and dissolved CO2. Along the LOAC this C can in turn undergo biogeochemical 

transformations, be lost back to the atmosphere via CO2 evasion, transferred further 

downstream to estuaries and the coast, or undergo sedimentation in wetlands (incl. lakes and 

reservoirs). It has been demonstrated at the catchment (Cole & Caraco, 2001) to global scale 

(Battin et al., 2009; Regnier et al., 2013; Ciais et al. in review), that these fluxes are important 

and should not be neglected in land C budgets. 

Globally, there remains a high degree of uncertainty associated with the amounts of C being 

transferred through and processed within the LOAC. Estimates of the total amount of terrestrial 

C inputs to inland waters range widely from 1.1 to 5.1 Pg C yr-1 (Cole at al., 2007; 

Aufdenkampe et al., 2011; Regnier et al., 2013; Drake et al., 2017), reflecting the fact that this 

flux is indirectly derived by summing estimates of aquatic CO2 evasion, C exports to the coast 

and burial in the LOAC. Of the three constituent fluxes, CO2 evasion is the largest (Drake et 

al., 2017) and thus uncertainties in CO2 evasion dominate the subsequent uncertainty in the 

export of terrestrial C to inland waters. Moreover, aquatic CO2 evasion is highly spatially 
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variable and hotspot regions have been identified; the boreal and tropical regions contributing 

disproportionately to global CO2 evasion from lakes (Hastie et al., 2018) and rivers (Lauerwald 

et al., 2015), respectively. 

In the Tropics, high terrestrial net primary productivity (NPP) and high rainfall drive a large 

export of C to inland waters and in turn high aquatic CO2 evasion.  In 2002, Richey et al. 

extrapolated observed pCO2 measurements to estimate a total CO2 evasion flux of 0.47 Pg C 

yr-1 from the inland waters of the Amazon Basin (upstream of Obidos, see Fig. S1), 13 times 

greater than their 36 Tg C yr-1 estimate of the total organic C (TOC) export to the coast. In 

2013, Rasera et al. calculated a substantially higher CO2 evasion of 0.80 Pg C yr-1 over the 

same basin area, largely as a result of higher values of gas exchange velocity (K600). More 

recently, Sawakuchi et al. (2017) added observations from the basin area downstream of 

Obidos and concluded that CO2 evasion from the entire Amazon Basin (down to mouth) could 

potentially be as high as 1.39 Pg C yr-1. 

Previous studies have shown that there is considerable seasonal variation in aquatic CO2 

evasion. Richey et al. (2002), found that the partial pressure of CO2 (pCO2) and in turn CO2 

evasion was tightly coupled to discharge, increasing and decreasing with rising and falling 

water respectively. Moreover, they measured exceptionally high pCO2 values (>44,000 µatm) 

on the floodplain of the mainstem of the Amazon, and speculated that the source of the C is 

likely to be organic matter exported from flooded forests. 

This was later confirmed by Abril et al. (2014) who demonstrated that Amazonian wetlands 

export around 50% of their GPP to inland waters in contrast to the typical values of <2% 

exported from terrestrial landscapes. They went on to conclude that the lateral C flux from 

wetlands is enough to account for around 0.21 Pg C yr-1 of the total CO2 evasion flux from the 

inland waters of the Amazon river-floodplain network. A recent study by Almeida et al (2017) 
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demonstrated that in addition to seasonal variation, large flood events also drive interannual 

variation in CO2 evasion from the Madeira River (a tributary of the Amazon), namely that years 

with extreme flooding evade 20% more CO2 to the atmosphere per unit area than years without. 

Another flux linked to flood events is C burial and a recent study estimated the POC burial flux 

in Amazon floodplain lakes at 16 Tg C yr-1 (Sanders et al., 2017), at least an order of magnitude 

lower than estimates of CO2 evasion. 

These observed seasonal and interannual signals in C fluxes are particularly important given 

that the region is increasingly vulnerable to extreme climatic events such as droughts and floods 

(Marengo et al., 2011; Chou et al., 2013; Gloor et al., 2013; Zulkafli et al., 2016). Indeed, recent 

studies have shown substantial decreases in terrestrial net primary productivity (NPP), and in 

turn C uptake from the atmosphere as a result of the 2005 and 2010 droughts (Zhao & Running, 

2010; Potter et al, 2011; Gatti et al., 2014; Doughty et al., 2015 and Feldpausch et al., 2016). 

However, most of these studies do not account for LOAC fluxes. For these reasons, it is 

important that we understand the interannual variation in LOAC fluxes and how they influence 

the overall net ecosystem production (NEP) of the entire Amazon Basin. 

With this in mind, we aim to tackle the following research questions: 

• To what extent do the LOAC fluxes (aquatic CO2 evasion and C export to the coast) 

vary inter-annually and seasonally throughout the entire Amazon Basin? 

• How does interannual variation in discharge and flooding affect the LOAC fluxes, 

terrestrial NPP, soil heterotrophic respiration (SHR) and ultimately the NEP of the 

Amazon Basin, particularly in the context of increasing climatic extremes? More 

specifically, does the incorporation of LOAC fluxes amplify or dampen variation in 

NEP?  
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Upscaling studies and empirical models are useful in providing estimates of individual 

components of the LOAC fluxes for the present day. However, these methods cannot represent 

the interaction between the different aspects of the Amazon Basin C cycle. A more complex 

and integrated modelling approach is required to understand and, ultimately, predict the longer-

term variation in LOAC fluxes and how this variation affects the net C balance of these 

ecosystems. 

In 2017, Lauerwald et al. developed the first full Land Surface Model (ORCHILEAK model) 

approach to represent the lateral C fluxes along the LOAC in the Amazon Basin and similarly 

demonstrated the significance of wetlands, concluding that 51% of total CO2 evasion comes 

from the floodplains. The study estimated a total CO2 evasion of 0.38 Pg C yr-1, close to the 

value produced by Richey et al. (2002) from up-scaling of measurements. In addition, they 

substantiated the idea that wetlands are a disproportionately important source of C to rivers, 

calculating that the CO2 inputs from root and heterotrophic respiration in flooded soils are 

almost twice that from non-flooded soils. 

The land surface model approach undertaken by Lauerwald et al. (2017) provides a valuable 

tool for further research, in particular the capability to make future projections of the LOAC C 

fluxes. However, while they were able to reproduce the seasonality in discharge on the main 

stem of the Amazon, the total flooded area was substantially underestimated when compared 

to the observed data of Richey et al., 2013 (after Hess et al., 2003). This is because Lauerwald 

et al. (2017) relied on the coarse (0.25°) global inundation dataset of Prigent et al. (2007), 

which tends to underestimate the total floodable area (Lauerwald et al., 2017).  Given previous 

estimates of the magnitude of the CO2 evasion flux from the Amazon floodplain, the 

importance of wetlands, and the region’s increasing vulnerability to climatic extremes; it is 

vital that we can accurately model its floodplain dynamics. 
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In this study, an improved representation of floodplain and wetland dynamics is achieved 

through the production of a new floodplain forcing file for the ORCHILEAK model, from the 

high resolution (100m or 0.0008°) synthetic aperture radar (SAR) dataset of Hess et al. (2015). 

We use this new forcing file to improve the simulation of the interannual variation of LOAC 

fluxes. In turn, we are able to address the research questions previously outlined, and more 

specifically to evaluate the impact of flood extent on the dynamics of LOAC fluxes, and 

ultimately how interannual variation in these aquatic C fluxes influences the overall variation 

in NEP in the Amazon.  

3.2. Methods 

3.2.1 A brief description of the ORCHILEAK land surface model 

ORCHILEAK (Lauerwald et al., 2017) is a new model branch of ORCHIDEE (Organizing 

Carbon and Hydrology in Dynamic Ecosystems) (Krinner et al. 2005), the land surface 

component of the Institut Pierre-Simon Laplace (IPSL) earth system model (ESM). It simulates 

the production of DOC in the canopy and soils, the leaching of DOC and CO2 from soils to the 

river network, DOC mineralization and the subsequent CO2 evasion from the water surface. 

Crucially, it also simulates the exchange of C between litter, soils and water on floodplains and 

in swamps. The representation of these fluxes is in turn closely coupled to the hydrology 

scheme, namely the representation of precipitation, throughfall, surface runoff, drainage, and 

the routing of discharge along the river-floodplain network.  At the same time, ORCHILEAK 

also simulates vegetation dynamics of 12 plant functional types, 5 of which are present in the 

Amazon, as well as the C balance of biomass, litter and soils. In short, ORCHILEAK integrates 

LOAC fluxes within a full representation of the terrestrial C cycling as simulated by 

ORCHIDEE.  However, in its current form ORCHILEAK does not account for the burial of 

POC in fluvial and floodplain sediments or the evasion of C to the atmosphere as CH4. These 

fluxes are further discussed later. While the model does not simulate the lateral transport of 
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POC, it does account for the decomposition of submerged litter as a substantial source of DOC 

and dissolved CO2 to the water column; in other words, POC from submerged litter is assumed 

to decompose locally in ORCHILEAK. The model is described in more detail in the proceeding 

sections.  

3.2.2 Overview of the hydrology, soil C scheme, and the transport and 

transformation of aquatic C fluxes in ORCHILEAK 

Precipitation and other meteorological input parameters are prescribed by a forcing file (Fig. 

S2). The hydrology module of ORCHILEAK, just like that of the standard version of 

ORCHIDEE, partitions the precipitation between interception loss in the vegetation canopy 

and throughfall to the ground.  The throughfall is further partitioned into infiltration and surface 

runoff. The soil water storage is refilled by infiltration and depleted by evapotranspiration and 

drainage. The soil hydrology is represented using a 2 m soil column vertically discretized into 

11 layers of geometrically increasing thickness from top to bottom. These processes are all 

represented at a 30 min time step (see d’Orgeval et al., 2008, Rosnay et al., 2002 for details). 

ORCHILEAK incorporates a soil C module largely based on ORCHIDEE-SOM (Camino-

Serrano, 2018). The soil module uses the hydrological module outputs to simulate microbial 

production and consumption of DOC, sorption and desorption of DOC on soil organic matter, 

the advection and diffusion of DOC and dissolved CO2 within the soil column and their 

subsequent lateral export via runoff and drainage as well as the throughfall of DOC onto the 

soil or water surface. There are 3 pools of DOC in the soil which are defined by their source 

material and residence times (𝜏carbon); the active, slow and passive pool. ORCHILEAK 

distinguishes between flooded and non-flooded soils; decomposition rates of litter, SOC and 

DOC being 3 times lower in flooded soils. Furthermore, it simulates the input of C to the water 

column from flooded soils; DOC from litter and SOC decomposition from the top 4.5 cm of 

the soil column feeds directly to the DOC pool of the overlying waterbody.  
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The river routing module of ORCHILEAK routes the runoff and drainage from the hydrology 

module and the corresponding dissolved C fluxes from the soil C module as river flow at a 

daily time-step along a gridded river routing scheme at 0.5° resolution (Vorosmarty et al., 

2000). The river network (Fig. S2) is connected to two sorts of wetland, floodplains and 

swamps. Where a swamp is present, a constant fraction of the river flow is feeding into the 

bottom of the soil column. Where a floodplain is present, a temporary water body of time-

variant surface and volume may be formed beside the river channel and it is fed by a fraction 

of river flow when bank-full discharge is surpassed. In the case of the Amazon basin, the 

bankfull discharge threshold was defined as the median discharge simulated over the period 

1980-2000 (see Lauerwald et al., 2017). From the inundated floodplain, water and dissolved C 

may infiltrate back into the soil or flow back into the river channel, while water may also 

evaporate. The maximal floodable area (MFF) and the areal fraction of swamps (MFS) per 

simulation grid is prescribed by a forcing file.  The water that infiltrates back into the soil is 

returned to the hydrology module. The dissolved C contained in that water is returned to the 

soil C module. 

ORCHILEAK simulates the transport and decomposition of terrestrial C inputs within the 

routing scheme, with the assumption that the lateral transport of DOC and CO2 are proportional 

to discharge. Within the water column, DOC is separated into a labile and refractory pool, with 

half-life times of 2 and 80 days, respectively. The labile pool corresponds to the active pool of 

the soil C scheme, while the refractory pool is derived from the slow and passive soil solution 

DOC pools combined. In order to ensure numerical precision, CO2 production and evasion from 

the water column, as well CO2 inputs from flooded litter and SOC are simulated at the high 

temporal resolution of 1/240 day (6 min). pCO2 is calculated at the same 6 min time-step based 

on the dissolved CO2 concentration, and the temperature-dependent solubility of CO2. pCO2 is 

then used along with a gas exchange velocity and a diurnally variable water surface area, to 
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calculate CO2 evasion. Fixed gas exchange values of 3.5 m d-1 and 0.65 m d-1 are used for rivers 

(and open floodplains) and forested floodplains, respectively. Flooded forests are given a lower 

gas exchange velocity due to the reduced impact of wind (i.e. lower wind speeds). For a 

comprehensive description of the ORCHILEAK model, including the underlying equations, 

please refer to Appendix 8.1 “ORCHILEAK model developments” taken directly from 

Lauerwald et al. (2017). 

3.2.3 New wetland forcing files 

The original routing scheme of ORCHIDEE used universal MFF and MFS derived from the 

Global Lakes and Wetlands Database (GLWD, Lehner and Doll, 2004) that were shown to 

considerably underestimate inundated areas in the Amazon (Guimberteau et al., 2012). As a 

result, Guimberteau et al. developed new MFF and MFS based on the 0.25° datasets of Prigent 

et al. (2007) and Martinez and Le Toan (2007), respectively. This led to some improvement 

but inundation was still substantially underestimated in the Amazon Basin.  

In the Guimberteau datasets, “swamps”, defined as the vegetated part of maximum floodplain, 

were subtracted from the MFF and used to create the separate swamp (MFS) forcing file. In 

ORCHILEAK (Lauerwald et al., 2017), swamps were reincorporated into the MFF forcing file, 

creating a larger, more realistic MFF, and representing the total flooded area from which inland 

water CO2 is evading. While these modifications again led to some improvement in the 

representation of floodplains and swamps in ORCHILEAK, it fundamentally still relied on a 

low resolution (0.25°) dataset, missing smaller areas of inundation, and meaning that the 

overall maximum floodplain extent was too small (Lauerwald et al., 2017).   

With these limitations in mind, we created a new maximal fraction of floodplain (MFF, 

Fig.1) forcing file for the ORCHILEAK model based on the 100m Synthetic Aperture Radar 

(SAR) data described in Hess et al. (2015, see Fig.1 a). This dataset represents different 
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wetland types during the 1996 May-June flood season. Firstly, we merged all of the wetland 

categories in Fig. 1 a) into one class, with the exception of the ‘non-wetland within the 

Amazon Basin’, ‘Open water’ and ‘Elevation >= 500 m, in Basin’ categories.  We then 

aggregated the merged dataset to a resolution of 0.5° (Fig.1 b).  Note that in the MFF we 

included three classes of land cover that were not flooded during the 1996 flood season, 

namely ‘non-flooded shrubs’, ‘non-flooded woodlands’ and ‘non-flooded forest’ (classes 44, 

66 and 88). This decision is based on the justification provided in Hess et al. that these “areas 

not flooded on either date, but adjacent to flooded areas and displaying landforms consistent 

with wetland geomorphology”. In other words, while these areas were not flooded in 1996, 

they are likely prone to inundation in other years with greater precipitation and thus should be 

included in maximum flood extent.  Across the Amazon basin, the new forcing file prescribes 

an average MFF of 13.6%, approximately twofold greater than the 6.3% produced with the 

original ORCHILEAK forcing derived from Prigent et al. (2007) (Fig. 1 c, d).  The addition 

of the 44, 66 and 88 land cover classes makes a moderate difference; we produce an average 

MFF of 10% without these 3 classes. For comparison, we also aggregated the 232m 

resolution wetland dataset of Gumbricht et al. (2017).  Assuming that all of the wetland 

categories in Gumbricht et al. (2017) contribute to the maximum flood extent, we produce an 

average MFF of 14.9%. However, we chose to use the MFF derived from Hess et al. (2015) 

as it is measured at a higher resolution and considers wetlands as synonymous with 

floodplains, while Gumbricht et al. (2017) has a wider definition. In order to account for the 

uncertainty associated with the MFF forcing file we created two new versions of it; one in 

which the MFF of each grid was systematically increased by 7% (excluding “highland” areas 

>=500m identified in Hess et al., 2015) (MFF+7), and another where the MFF was decreased 

by 7% (MFF-7). We chose a value of 7% as this is the inferred error of the original dataset, 

described in Hess et al. (2015). Across the Amazon basin, the MFF-7 forcing gives an 
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average MFF of 9.3% while the MFF+7 gives an average of 18.3%. This range also envelops 

the uncertainty associated with the inclusion or exclusion of classes 44, 66 and 88, as well as 

that associated with the difference between the Hess and Gumbricht datasets. 

 

Chapter 3 Figure 1: a) Wetland classification within the Amazon Basin (Hess et al., 2015), b) the 

new maximal fraction of floodplain (MFF) forcing file derived from Hess et al. (2015) data, c) 

the previous MFF forcing file (Guimberteau et al., 2012), and d) the difference between the new 

and old MFF. In pane d), “+ve” refers to an increase in MFF with the new MF forcing, while “-

ve” refers to a decrease. Maps in panels b-d are at a resolution of 0.5°. 

 

We also created a new ORCHILEAK maximal fraction of swamps (MFS, Fig. 2) forcing file 

based on the 232 m resolution tropical wetland dataset of Gumbricht et al (2017), as the Hess 

et al. (2015) dataset does not define an explicit “swamp” category.  We extracted class 30 

(Swamps incl. bogs) and 40 (Fens), before merging these classes and aggregating them to the 

0.5° resolution. Across the Amazon basin, the new forcing file prescribes an average MFS of 
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5.4% (Fig.2, b) which is comparable to the 6% produced with the previous approach 

(Guimberteau et al., 2012) (Fig. 2, c, d). 

 

Chapter 3 Figure 2: a) Swamps and ferns classification within Amazon Basin from Gumbricht 

et al (2017),  b) the new maximal fraction of swamps (MFS) forcing file derived from Gumbricht 

et al. (2017) data, c) the previous MFS forcing file (Lauerwald et al., 2017), and d) the difference 

between the new and old MFS. In pane d), “+ve” refers to an increase in MFF with the new MF 

forcing, while “-ve” refers to a decrease. Maps in panels b-d are at a resolution of 0.5°. 

 

3.2.4 Simulation Set-up 

3.2.4.1. Model configuration 

The model was initially run from 1980 until 2000 using two different climate forcing datasets, 

namely Princeton GPCC (Sheffield et al., 2006), and a regionally updated version of NCC 

(Ngo-Duc et al., 2005) which was introduced by Guimberteau et al. (2012). This was done in 

order to test which dataset is able to better recreate observed discharge and the associated 

b) a) 

c) d) 
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seasonal and interannual variability in floodplain inundation, as well as to account for the 

uncertainty associated with choice of climate forcing. With the combination of the two climate 

forcing files and the three MFF forcing files, we ran six different model configurations. Model 

parameterisation can also cause uncertainty such as the setting of decomposition rate constants 

for labile and refractory DOC within ORCHILEAK. However, the impact of these parameters 

was already investigated via a sensitivity analyses in the paper describing the development of 

the ORCHILEAK model (Lauerwald et al., 2017). As such, we chose to focus on climate 

forcing and floodplain area as sources of uncertainty in combination with substantial validation 

against observations and model outputs from the literature. 

The original ORCHILEAK simulation (Lauerwald et al., 2017) used only the updated NCC 

climate forcing. Here, we ran four simulations with the NCC climate forcing dataset; one with 

the new versions of MFF (hereafter referred to as “standard MFF”) and MFS, two more to 

account for the uncertainty in MFF (MFF+7 & MFF-7), and another with the old MFF 

(Lauerwald et al., 2017), in order to determine the impact of the new wetland forcing files. We 

ran the Princeton GPCC simulations with the new versions of MFF and MFS only (three runs). 

Model parameterisation follows Lauerwald et al. (2017). 

3.2.4.2. Hydrology statistics 

Following Lauerwald et al. (2017), we calculated a series of statistical parameters in order to 

calibrate the flood dynamics of the model in a robust and consistent manner.  After an initial 

run, we calculated bank-full discharge and the median water storage for each grid cell (1980-

2000), for each model configuration. Any discharge in excess of the median water storage will 

overtop and begin to inundate the floodplains. After updating bank-full discharge and re-

running each model configuration, we calculated the 95th percentile of all simulated water level 

heights (1980-2000) for each grid cell. This represents the maximum water level, at which the 
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maximum floodable area is inundated. Once this was updated, each model configuration was 

re-run once more.   

3.2.4.3. Soil carbon spin up 

In order to reach a steady state soil carbon pool, we spun-up the model for a total of 

approximately 7,000 years, looping over 10 years of climate forcing data (1948-1957). To 

reach steady state more quickly, we first ran the model for 2000 years with the default soil 

carbon residence time (𝜏carbon) values halved and a constant atmospheric CO2 concentration of 

350 µatm. Land-cover, representative of the first year of climate forcing data (1948), remained 

constant over these spin-up runs.  After this procedure, all of the soil C pools were 

approximately at steady state (<0.01% change over the last century of the spin up). Note that it 

is assumed that soil C pools were in quasi steady state before significant human impact. 

3.2.4.4. Transient simulations 

We then performed a transient (industrial) run from 1860, until the year that the particular 

climate forcing dataset starts from (for example to 1948 for Princeton GPCC), again looping 

over 10 years of climate data but with transient land-cover (LUH-CMIP5) and atmospheric 

CO2. Finally, we performed a fully transient simulation (land-cover, atmospheric CO2 and 

climate) to the final year of each climate forcing dataset. Note that the NCC climate forcing 

data is only available until 2000 while the Princeton GPCC data runs until 2010.  

3.2.5.  Model evaluation and analysis of simulation results 

We started by evaluating the hydrology, concentrating on flooded area as this was 

underestimated in the original ORCHILEAK model set up (Lauerwald et al., 2017). The new 

MFF and MFS forcing files meant that we had to re-evaluate both discharge and floodplain 

inundation dynamics. We firstly focused on recreating observed discharge at Obidos (Fig. S1), 

the most downstream gauging station for which an observed time-series is available 

(Cochonneau et al., 2006). Total flooded area of the central quadrant of the Amazon basin (Fig. 
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S1) was tested against remote sensing data (Melack et al., 2011). Note that the Melack et al. 

dataset uses the same wetland mask as we use here, but the seasonality and area of inundation 

is completely independent. We then performed a model validation for the DOC and aquatic 

CO2 evasion fluxes using the same validation data and methodology as described in Lauerwald 

et al. (2017), as well as an in-depth comparison of our results to those of previous studies. In 

addition, we examined the interannual variation of both the terrestrial (meaning NPP and SHR) 

and aquatic C fluxes (also referred to as LOAC fluxes, and meaning CO2 evasion from the 

water surface and the export flux of C to the coast) of the Amazon, and assessed how this 

variation relates to rainfall and temperature variation through linear regression analysis. As we 

found long-term (decadal) trends in several of the fluxes, most notably NPP (Tables S2 & S3), 

we detrended the annual times series using the Detrend function within the “SpecsVerification” 

package in R (R Core Team 2013), before performing the regression analyses using 

STATISTICATM. Finally, we sum the various C fluxes to calculate the net C balance of the 

Amazon Basin (see 2.6) and examine the importance of the LOAC fluxes to the overall C 

balance.  

3.2.6. Calculating the net carbon balance of the Amazon 

In order to estimate the net C balance of the Amazon basin, we summed the terrestrial and 

aquatic C fluxes to estimate Net Ecosystem Production (NEP) and Net Biome Production 

(NBP). Positive values of NEP and NBP correspond to a net sink. 

We define NEP as follows: 

                           𝑁𝐸𝑃 = 𝑁𝑃𝑃 + 𝑇𝐹 − 𝑆𝐻𝑅 − 𝐹𝐶𝑂2 − 𝐿𝐸Aquatic                                              (1)      

Where NPP is terrestrial net primary production, TF is the throughfall flux of DOC, SHR is 

soil heterotrophic respiration (only the part evading from the soil surface); FCO2 is CO2 

evasion from the water surface and 𝐿𝐸Aquatic is the export flux of C to the coast. NBP is the 
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same as NEP but with the addition of the C lost (or gained) through land use change (LUC, 

including fires and the export of woody biomass) and crop harvest (Harvest): 

                              𝑁𝐵𝑃 = 𝑁𝐸𝑃 − (𝐿𝑈𝐶 + 𝐻𝑎𝑟𝑣𝑒𝑠𝑡)                                                                (2)                                

3.3. Results  

3.3.1. Representation of Hydrology  

The model is able to reproduce river discharge at Obidos (1980-2000), the farthest downstream 

river gauge (Fig. S1), both in terms of total magnitude and seasonal variability. Simulation with 

the old floodplain/swamp forcing used by Lauerwald et al. (2017) and simulations based on 

the new floodplain/swamp forcing file showed a similarly good performance (Fig.3-1a-c, Table 

1). There was no substantial difference in the simulated discharge from the Amazon basin after 

the implementation of the new floodplain. However, the new floodplain forcing substantially 

improved the ability of the model to reproduce the seasonality in flooded area (Fig. 3-2a-c); 

Nash Sutcliffe-Efficiency (NSE) and Root Mean Square Error (RMSE) were 0.91 and 12% 

respectively with the new floodplain forcing, compared to -0.75 and 32% with the old (Table 

1).  

Comparing model runs driven by the two different climate forcing, NCC and Princeton GPCC 

climate data, we find a similarly good performance as well. With both forcing data sets, we 

were able to recreate the observed mean magnitude and seasonality in discharge at Obidos 

(1980-2000) (Fig. 3-1 a, b) and flooded area in the central (Fig. S1) Amazon (1981-1996) (Fig. 

3-2 a, b).  

While the model was mostly able to reproduce the observed interannual variation in discharge, 

there was some minor difference in performance related to the choice of climate forcing (Figure 

4, Table S1).  The simulation driven by the Princeton GPPC data had an NSE of 0.79 and a 

RMSE of 4% against observations, compared to 0.50 and 7% for the NCC run (Figure 4, Table 
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S1). The year with the highest observed discharge was 1989 with a mean of 199 103 m3s-1. The 

Princeton GPCC run correctly simulated 1989 as the year with the highest discharge, with a 

mean of 194 103 m3s-1.  The NCC run ranks 1989 as the year with the second highest discharge, 

and actually predicts a higher 1989 mean discharge of 203 103 m3s-1. With NCC, the year with 

highest discharge is 1982, which is the 5th highest discharge in the observed time series. 

Conversely, the NCC simulation correctly modelled 1992 as the year with the lowest discharge 

(146 103 m3s-1) while the run driven with Princeton ranked 1992 second lowest (Figure 4, Table 

S1). It is important to note that the differences in observed discharge between both the highest 

(1989) and second highest (1994), and lowest (1992) and second lowest (1983) are minor 

(Figure 4, Table S1).   
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Chapter 3 Figure 3-1: Seasonality of simulated versus observed 

discharge (Cochonneau et al., 2006) at Obidos (1980-2000 

monthly mean), with a) NCC climate forcing with standard 

MFF b) Princeton GPCC climate forcing with standard MFF 

and c) NCC with old MFF & MFS. 2: Seasonality of simulated 

versus observed flooded area (Melack et al., 2011) in the 

central Amazon basin (1981-1996 monthly mean) with a) NCC 

climate forcing with standard MFF b) Princeton GPCC 

climate forcing with standard MFF and c) NCC with old MFF 

& MFS. 
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Chapter 3 Figure 4 Annual variation of 

simulated versus observed discharge 

(Cochonneau et al., 2006) at Obidos (1980-2000) 

for a); run with NCC climate forcing with 

standard MFF, b) Princeton GPCC climate 

forcing with standard MFF and c) NCC climate 

forcing with old MFF & MFS 

 

: 
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Chapter 3 Table 1: Performance statistics for modelled versus observed discharge 

Q at Obidos and flooded area in the central Amazon basin for different climate 

forcing configurations 

Seasonality in Q at Obidos 

(1980-2000) 

Flooded area in central 

Amazon (1981-1996) 

Interannual variation in Q 

at Obidos (1980-2000) 

Climate 

forcing 

RSME NSE R2 RSME NSE R2 RSME NSE R2 

NCC 

 

9% 0.91 0.95 12% 0.91 0.91 7% 0.50 0.66 

Princeton 

GPCC  

6% 0.94 0.95 13% 0.89 0.90 4% 0.79 0.81 

NCC (old 

MFF & 

MFS)  

6% 0.95 0.95 32% -0.75 0.97 6% 0.62 0.67 

 

3.3.2. Carbon fluxes along the Amazon Basin 

We estimate a long-term mean (1980-2000 across six model runs) NPP rate of 1,214 (1,204-

1,223) g C m-2 yr-1 (range represents the variation caused by the combination of the two climate 

forcing and the three MFF forcing files; standard, MFF +7 and MFF-7), amounting to a total 

NPP of 6.81 (6.75-6.86) Pg C yr-1 for the entire Amazon Basin (5.6 x 106 km2).  If we only 

consider the uncertainty associated with climate forcing alone, the range is reduced to 6.77-

6.85 Pg C yr-1. The effect of the new MFF and MFS on NPP was negligible; mean annual NPP 

being 1,220 g C m-2 yr-1 (total of 6.84 Pg C yr-1) and 1,222 g C m-2 yr-1 (total of 6.85 Pg C yr-

1) with the original (Lauerwald et al., 2017) and new forcing files, respectively, both driven by 

NCC. We estimate a mean annual soil heterotrophic respiration (SHR) of 5.87 (5.62-6.16) Pg 

C yr-1.  The new forcing file had a significantly greater effect on SHR than on NPP; the original 

forcing file (with NCC) produces a higher mean annual SHR of 6.30 Pg C yr-1, compared to 

5.94 Pg C yr-1 (with NCC) this difference due to the greater suppression of organic matter 

decomposition with the new MFF (Rueda-Delgado et al., 2006). We estimate a mean annual 

throughfall DOC flux (TF) of 79 (78-79) Tg C yr-1. 

We simulate a mean annual (1980-2000) CO2 evasion of 746 (526-998) Tg C yr-1 from the 

water surfaces of the Amazon basin, a 97% increase from the 379 Tg C yr-1 produced with the 
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original ORCHILEAK configuration (Lauerwald et al., 2017). If we only include the 

uncertainty associated with climate forcing, we produce a mean of 729 Tg C yr-1 and the range 

is substantially reduced to 700-758 Tg C yr-1, meaning that the majority of the uncertainty in 

the evasion flux comes from the MFF forcing. We attribute approximately 75% of the CO2 

evasion flux to the floodplain compared to 51% in the original study (Lauerwald et al., 2017). 

With the new MFF forcing, we moderately improved the reproduction of observed CO2 evasion 

fluxes during low (monthly avg. discharge < yearly avg. discharge) and high flow (monthly 

avg. discharge > yearly avg. discharge) periods at three sites in the Amazon (Rasera et al., 

2013, Fig. 5) (R2 =0.80, RMSE = 1.4 µmol CO2 m
−2 s −1 vs R2 =0.69, RMSE = 1.9 µmol CO2 

m−2 s −1, with new (a) and old MFF (c) respectively, both driven by NCC). The performance 

was further improved with the Princeton GPCC climate data; R2 =0.93, RMSE = 1.4 µmol CO2 

m−2 s −1 (Fig. 5, b).   
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We simulate a mean annual (1980-2000) DOC export to the coast (downstream of Obidos) of 

38 (33-44) Tg C yr-1. In Figure 6, we compare simulated DOC flux against the observations at 

several sites (see Fig. S1 for locations) and find that the model can recreate the temporal 

variation in DOC relatively well (Table S5). The effect of the new forcing files is mixed, with 

 Chapter 3 Figure 5: Observed versus simulated CO2 evasion rates per water surface area for a) run 

with NCC climate forcing (standard MFF), b) Princeton GPCC climate forcing (standard MFF), 

and c) NCC climate forcing with old MFF & MFS. Observed data are from Rasera et al. (2013). 

Reported are means of the observed values, 2006 -2010. The simulated values refer to the mean 

evasion rate during low (monthly avg. discharge < yearly avg. discharge) and high flow periods 

(monthly avg. discharge > yearly avg. discharge) (1981–2000), see Figure 3. Note that the scale of 

the axes c) is slightly different to a) and b). 
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the performance improving at some sites but worsening at others (Fig. 6). The largest impact 

can be seen at Obidos where the new forcing files result in a substantially larger DOC flux 

during high flow. The model run using the old MFF and MFS appears to perform better at 

moderate discharge, while the new set up appears to perform better during periods when 

observed DOC is very high (i.e. 1990).  Both appear to overestimate DOC flux at Obidos during 

low flow. We simulate a mean annual flux (to the coast) of dissolved CO2 of 7.1 (6.8-7.7) Tg 

C yr-1. 

 

 

3.3.3. The net carbon balance of the Amazon Basin 

The long-term mean (1980-2000) C balance; that is the components of the Net Ecosystem 

Production (NEP, equation 1), is presented in Fig. 7.  We estimate a mean (1980-2000) NEP 

of 0.23 (0.15-0.33) Pg C yr-1 and a mean Net Biome Production (NBP, equation 2) of 0.04 (-

0.04-0.14) Pg C yr-1. Using the original floodplain and swamp forcing files (with NCC), we 

estimate a mean annual NEP of 0.17 Pg C yr-1. Using the same set up (with NCC) but with the 

new MFF and MFS forcing files we produce a higher sink of 0.21 Pg C yr-1. 

Chapter 3 Figure 6: Simulated versus observed DOC fluxes for 

the Amazon and its tributaries. Observed data are taken from 

the CAMREX data set (Richey et al., 2008). 
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3.3.4. Interannual variation of the carbon fluxes within the Amazon Basin 

Our results show considerable interannual variation in NPP, from a mean low of 6.41 (6.29- 

6.52) Pg C yr-1 in 1983, to a high of 7.16 (7.14- 7.16) Pg C yr-1 in 1996 (Fig.8-a), though the 

Princeton GPCC simulation, which runs until 2010, has several years (2006-2009 inclusive) 

with slightly higher NPP. This variation has a strong positive correlation with precipitation 

(detrended R2 =0.48, p<0.001 with NCC; detrended R2 =0.43, p<0.0001 with Princeton GPCC, 

Table S6 & S7, Fig. 9-a) and a strong negative correlation with temperature (detrended R2 

=0.56, p<0.0001 with NCC; detrended R2 =0.43, p<0.0001 with Princeton GPCC, Table S6 & 

S7, Fig. 9-b).  In addition, NPP is inversely correlated with the multivariate ENSO index (MEI, 

sum of monthly MEI from July of preceding year to June of concurrent year, detrended R2 

=0.40, p<0.01 with NCC; detrended R2 =0.35, p<0.001 with Princeton GPCC, Table S6 & S7, 

Fig. 9-c) (Wolter et al., 2011). We also find substantial interannual variation in SHR from a 

mean (across the two runs with new floodplain forcing) low of 5.69 (5.41- 6.03) Pg C yr-1 in 

1982 to a high of 6.06 (5.91- 6.24) Pg C yr-1 in 1998 (Fig. 8-b). Conversely to NPP, SHR is 

positively correlated with temperature, and negatively correlated with rainfall, though these 

 

Chapter 3 Figure 7: Simulated annual C 

budget (NEP) for the Amazon basin 

annual mean (1980-2000), where NEP is 

net ecosystem production, NPP is 

terrestrial net primary productivity, TF 

is throughfall, SHR is soil heterotrophic 

respiration, FCO2 is aquatic CO2 evasion, 

LOAC is C leakage to the land-ocean 

aquatic continuum (FCO2 + to 𝑳𝑬Aquatic), 

and 𝑳𝑬Aquatic is the export C flux to the 

coast. Numbers refer to mean across the 

six simulations while numbers in 

parentheses refer to range. 
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relationships are relatively weak (relationship with temperature not significant with NCC, 

detrended temperature R2= 0.13 with Princeton GPCC, p<0.05; detrended rainfall R2 =0.19, 

p<0.05 with NCC, detrended rainfall R2 = 0.24, p<0.01 with Princeton GPCC). 

  

  

Our results also show considerable inter-annual (1980-2000) variation in inland water CO2 

evasion from a mean low of 571 (402- 759) Tg C yr-1 in 1980 to a high of 920 (633- 1,267) Tg 

C yr-1 in 1982 (Fig.8-c), strongly correlated with precipitation (detrended R2 = 0.55, p<0.001 

with NCC; detrended R2  = 0.64, p<0.0001 with Princeton GPCC, Table S6 & S7) and inversely 

correlated with temperature (detrended R2 = 0.21, p<0.05 with NCC; detrended R2  = 0.18, 

p<0.05 with Princeton GPCC, Table S6 & S7). While both model runs rank 1982 as having the 

 

Chapter 3 Figure 8: Simulated annual variation in NEP and its components over the Amazon 

Basin from 1980-2000 (to 2010 in case of Princeton GPCC). 
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highest CO2 evasion over the simulation period (1980-2000), there is some divergence in 

regards to the lowest ranking year. The NCC run ranks 1980 lowest with 584 (422-759) Tg C 

yr-1 whereas the Princeton GPCC run ranks 1998 lowest with a total of 538 (399-685) Tg C yr-

1.  In 1980 the Amazon rainy season was exceptionally dry (Andreoli et al., 2012), while 1998 

coincides with a strong El Nino event (Fig.9-c) and associated anomalously low precipitation 

and high temperatures (Wenhong et al., 2011; Gloor et al., 2013, 2015). Conversely, 1982 

experienced an exceptionally wet rainy season (Andreoli et al., 2012). These temporal patterns 

are also exhibited in the rainfall and temperature parameters from both of the climate forcings 

used in this study (Fig.9).  

At the interannual timescale, aquatic CO2 evasion is only weakly to moderately correlated with 

NPP (detrended R2 = 0.19, p<0.05 NCC run; detrended R2 = 0.28, p<0.01 with Princeton GPCC 

run, Table S6 & S7) and therefore the proportion of NPP lost through the LOAC is variable, 

ranging from 9% to 13%. In contrast, inland water CO2 evasion is strongly inversely correlated 

with SHR (detrended R2 = 0.76, p<0.0001 NCC run; detrended R2 = 0.66, p<0.0001 with 

Princeton GPCC run, Table S6 & S7), indicating that years with less SHR have more evasion, 

and vice versa. Again, we find considerable interannual variation in C flux to the coast (Fig. 8 

d) displaying a similar pattern to aquatic CO2 evasion (aquatic CO2 evasion versus C flux to 

coast R2 =0.48 for NCC, p<0.001; R2 =0.64 p<0.0001 for Princeton GPCC, Table S6 & S7). 

In relative terms, the LOAC fluxes show far greater interannual variation than the terrestrial C 

fluxes. For example, aquatic CO2 evasion (NCC, 1980-2000) has a coefficient of variation (CV) 

of 11.7%, while the lateral flux of C to the coast has a CV of 13.6%. In contrast, NPP and SHR 

have a CV of only 2.9% and 1.5%, respectively.  
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As with its constituent components, simulated NEP shows considerable interannual variation 

(Figure 8-e) from a low of -0.05 (-0.11 – 0.03) Pg C yr-1 in 1983 to a high of 0.52 (0.41- 0.64) 

Pg C yr-1 in 1996. NEP is positively correlated with rainfall (detrended R2 = 0.27, p<0.05 NCC 

run; detrended R2 = 0.25, p<0.01 with Princeton GPCC run, Table S6 & S7) and negatively 

correlated with temperature (detrended R2 = 0.45, p<0.001 NCC run; detrended R2 = 0.41, 

p<0.001 with Princeton GPCC run, Table S6 & S7). The association with ENSO (detrended R2 

 

Chapter 3 Figure 9:Interannual variation in a) rainfall and b) temperature. c) Monthly 

multivariate ENSO Index from 1980-2010 (Wolter et al., 2011) 
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= 0.35, p<0.01 NCC run; detrended R2 = 0.26, p<0.01 with Princeton GPCC run, Table S6 & 

S7) can be clearly seen in the simulated time series of NEP. Of the top six years with the lowest 

NEP (largest source of C to the atmosphere), four coincide with strong El Nino events, namely 

1983, 1988, 1987 and 1998. Conversely, several of the years with the highest NEP (largest sink 

of atmospheric CO2) take place during La Nina events, notably the strong La Nina event of 

1988-1989, which results in the second highest simulated NEP; note that 2011 was one of the 

strongest La Nina on record but is not included in our forcing period. Taking the Princeton 

GPCC run alone, 2010 has the lowest NEP being a net CO2 source to the atmosphere of -0.12 

Pg C yr-1 (-0.14- -0.07) and coincides with another El Nino event combined with anomalously 

high Atlantic sea surface temperatures (SSTs) (Lewis et al., 2011). 

We diagnosed the covariance between aquatic CO2 evasion and the terrestrial C balance 

(defined as NPP-SHR) to determine how the variance in aquatic CO2 evasion contributes to the 

overall variance in NEP across the simulation period. We find a negative covariance between 

aquatic CO2 evasion and the terrestrial C balance of -0.024 and -0.022 for NCC and Princeton 

GPCC, respectively. Moreover, the terrestrial C balance is substantially more sensitive to 

changes in both precipitation and temperature than NEP (Tables S8-S11). For example (NCC 

run, Table S8), across the Amazon basin we find that the terrestrial C balance increases by 120 

Tg C yr-1 for every 100mm increase in rainfall, while NEP only increases by 57 Tg C yr-1. Note 

that these values are based on simple linear regression and thus the sensitivity to rainfall may 

be exaggerated but this is the case for both values. 

As a consequence of this change in sensitivity, the variation of the budget is less pronounced 

once the aquatic components are incorporated; the terrestrial C balance has a SD of 0.20 Pg C 

yr-1 and 0.24 Pg C yr-1 with NCC and Princeton GPCC respectively, while NEP has a SD of 

0.15 Pg C yr-1 and 0.17 Pg C yr-1.  These results concur with the idea of CO2 evasion having a 
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moderating effect on overall heterotrophic respiration and suggest that accounting for CO2 

evasion from the river-floodplain network dampens the interannual variation in NEP.  

3.4. Discussion 

Our value of mean (across two models) NPP rate of 1,214 g C m-2 yr-1 matches closely to 

previous estimates in the Amazon. Rodig et al. (2018) estimated a mean annual NPP of 1,130 

g C m-2 yr-1 using the forest gap FORMIND model, while a value of 1,030 g C m-2 yr-1 was 

derived from MODIS remote-sensing data (Zhao & Running, 2010). 

Our estimate of mean total annual aquatic CO2 evasion of 746 (526-998) Tg C yr-1 is relatively 

close to the 800 Tg C yr-1 proposed by Rasera et al. (2013) from upscaling of observations, 

over a larger basin area of 6 × 106 km2. If we adjust our estimate (calculated across a smaller 

basin area of 5.6 × 106 km2) to the same area, then we get a closer estimate of 799 Tg C yr-1. 

Moreover, if we only base our mean CO2 evasion estimate on the same years as Rasera et al. 

(i.e. 2006- 2010), we actually produce a larger value of 887 Tg C yr-1 (based on Princeton 

GPCC run only). We also estimate a similar distribution of CO2 evasion between low and high 

flow periods (Table S4).  Like those of Rasera et al. (2013), our results exhibit a strong seasonal 

cycle in CO2 evasion, with the high flow season (monthly avg. discharge > yearly avg. 

discharge) contributing approximately 75% of the annual total. In contrast, our results are 

considerably higher than those of Richey et al. (Table S4). It is encouraging that our results are 

similar to those of Rasera et al. (2013) as their upscaling was based on an extensive 5-year field 

campaign where the flux of CO2 was directly measured while those of Richey et al. (2002) 

were derived indirectly from pCO2 measurements. In terms of flood extent, the Rasera et al. 

study used the same assumptions for water surface area as Richey et al (2002), who in turn 

used an older version (Hess et al., 2002) of the Hess et al. (2015) floodplain product use in this 

study.  
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For the central quadrant of the Amazon basin alone (area = 1.77× 106 km2), we simulate a mean 

annual aquatic CO2 evasion (1980-2000) of 341 and 318 Tg C yr-1 with NCC and Princeton 

GPPC, respectively, close to the 360 Tg C yr-1 estimated by Rasera et al. (2013), but 

considerably higher than the 210 Tg C yr-1 of Richey et al. (2002) and the 229 Tg C yr-1 of 

Lauerwald et al. (2017). Our results concur with both previous upscaling studies that the central 

Amazon basin contributes approximately 45% of the basin wide aquatic CO2 evasion (Table 

S4). The differences between our CO2 evasion estimates and those of Richey et al. (2002) are 

largely due to gas exchange velocity; we applied a fixed k600 rate of 3.5 m day-1 for rivers, while 

they used very conservative gas exchange velocities of 1.2 to 2.3 m day-1. Conversely, the 

differences between our results and those of Lauerwald et al. (2017) are largely a result of the 

increase in maximal fraction of floodplain (MFF) across the basin, and the resultant increase 

in direct C inputs to inundated areas from canopy through-fall, submerged litter and soils. Our 

estimated DOC export to the coast (downstream of Obidos) of 34 (34-44) Tg C yr-1 is relatively 

high; Lauerwald et al. (2017), Richey et al. (1990) and Moreira-Turcq et al. (2003) estimated 

this flux at 23.4 Tg C yr-1, 24.4 Tg C yr-1 and 27 Tg C yr-1, respectively. 

Our results for the mean NEP of 0.23 (0.15-0.33) generally concur with previous estimates. 

Tian et al. (1998) used the Terrestrial Ecosystem Model to estimate a mean annual NEP, 

without considering the LOAC loop of the carbon cycle (undisturbed ecosystems, 1980-1994), 

of 0.2 ±0.9 Pg C yr-1. Another modelling study (S. Sitch, B. Smith and J. Kaplan, unpublished 

but cited in Prentice and Lloyd, 1998, page 620) also settled on a mean annual NEP of around 

0.2 ±1.2 Pg C yr-1 over the same 15-year period. A 2016 review (Grace, 2016), compiled all of 

the existing literature to produce two estimates of the net C balance of the Amazon Basin; one 

‘bottom-up’ approach using “plot data and remote sensing” and one ‘top-down approach’ using 

“aircraft-based measurements in the planetary boundary layer”, the latter based on Gatti et al. 

(2014). These two approaches include perturbation fluxes such as deforestation and harvesting 
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and evasion emissions in the atmospheric inversion estimate of Gatti et al. and are thus 

equivalent to our estimate of NBP. The bottom-up approach concludes that the Amazon Basin 

is a net C source to the atmosphere of 0.11 Pg C yr-1 when including land use change emissions 

but with an uncertainty of ± 0.16, in other words not markedly different from zero. The top-

down approach came to a similar conclusion; that the Amazon is a net source to the atmosphere 

of only 0.06 Pg C yr-1 in a ‘normal year’ but only two years (2010 and 2011) were analyzed in 

Gatti et al. Again, the near neutral balance of Gatti et al. (2014) intrinsically includes aquatic 

CO2 evasion (though not the lateral fluxes of C to the coast). They argue that the impact of 

riverine CO2 evasion on the Amazon C balance is minimal as the “riverine organic carbon loop 

is very nearly closed”. In other words, the vast majority of LOAC export to aquatic systems 

return to the atmosphere before leaving the Amazon Basin. In summary, the results of Gatti et 

al. (2014) are arguably the most comparable to our own and it is therefore encouraging that we 

produce a relatively similar NBP of 0.04 (-0.04-0.14) Pg C yr-1 (a difference of 100 Tg C-1 but 

with overlapping uncertainty ranges). It is important to note that ORCHILEAK does not 

incorporate methane fluxes. Indeed, if we include the recent estimate of the annual methane 

flux of approximately 40 Tg C-1 (Pangala et al., 2017) measured from the lower troposphere 

via aircraft; our NBP reduces to a neutral C balance. 

While the new maximal fraction of floodplain (MFF) forcing leads to a dramatic increase in 

aquatic CO2 evasion, it actually causes an overall decrease in the flux of CO2 from the entire 

Amazon basin to the atmosphere. The greater inundation leads to a reduction in decomposition 

rates of litter, and soil organic matter. This suppression of organic matter decomposition has 

been observed in further field experiments (Dos Santos & Nelson, 2013), in addition to the 

study that informed the model configuration (Rueda-Delgado et al., 2006). This means that 

there is an additional net land C sink of approximately 40 Tg C yr-1 per year with the new 

floodplain compared to the old floodplain. While in a single year these differences are not so 



Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon 

basin: An analysis of the interannual variability in the boundless carbon cycle 

123 

 

substantial, over long time periods they could lead to significant differences in the long-term 

net C balance of the Amazon.   

We found that the interannual variation in NPP is positively correlated with rainfall and 

negatively correlated with temperature and our results concur with previous research showing 

that drought years have significantly lower NPP. In our outputs, two of the years with the 

lowest NPP are 1983 and 1988, coinciding with two strong El Nino events (1982-1983 and 

1987-1988, Figure 9), and corroborating the findings of Asner & Townsend (2000) based on 

analysis of remote sensing data from 1982-1993. Previous modelling studies such as Botta et 

al (2002) have also found 1983 and 1988 to be years with anomalously low NPP in the Amazon. 

Moreover, a 2011 study that combined remote sensing and modelling (Potter et al., 2011) 

estimated that the 2010 drought caused a reduction in NPP in the Amazon of 7% relative to the 

La Nina year 2008, and we produce a similar value of 8% (0.58 Pg C). However, a more recent 

study (Doughty et al., 2015) contradicts these findings. Doughty et al. (2015) measured NPP, 

autotrophic respiration and heterotrophic respiration at thirteen 1ha plots across South America 

from 2009-2011 and found that NPP remained relatively constant throughout the period. They 

observed a reduction in CO2 uptake via photosynthesis by 0.38 Pg C yr-1 during the 2010 

drought, but this was offset by a concurrent reduction in autotrophic respiration. They observed 

that the trees prioritised investment in growth (canopy tissue), while they reduced autotrophic 

respiration investment in tissue maintenance and defence, which ultimately may have caused 

an increase in tree mortality post drought (Doughty et al., 2015). The inability of dynamic 

global vegetation models (DGVMs), as well as remote sensing driven algorithms (Zhao & 

Running, 2010; Medlyn, 2011; Wang et al., 2013) to represent these complex biological 

interactions is a major limitation in current efforts to estimate NPP at the regional to global 

scale. 
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Our results show that both the seasonality and interannual variation in aquatic CO2 evasion, 

are closely correlated with discharge. In Figure 10 a) we show the relationship between 

simulated monthly discharge and CO2 evasion on the Madeira River at Porto Velho (R2=0.81) 

(see Fig. S1 for location). The Madeira basin contains approximately one fourth of Amazonian 

wetlands (Melack and Hess 2010), including the extensive Llanos de Moxos and was the 

subject of a recent CO2 evasion field campaign (Almeida et al., 2017). Our relationship follows 

a sigmoid curve where aquatic CO2 evasion increases slowly at first while discharge remains 

in bank. Once the river over-tops its banks, CO2 evasion increases rapidly before levelling out 

once the full area of the floodplain is saturated. Thus, at the basin scale, aquatic CO2 evasion 

not only increases because of larger floodplain surface area, but also because of higher areal 

rates. This highlights the disproportionate importance of floodplains as a source of C and 

supports the findings of Almeida et al. (2017, Fig. 10, b). While they found a similarly strong 

relationship between observed discharge and aquatic CO2 evasion at Porto Velho (R2=0.85), as 

well as a similar range of values, the relationship does not follow precisely the same shape as 

ours. Their increase in evasion rate is more gradual and they do not observe a plateauing of 

CO2 evasion above a certain discharge. This perhaps suggests that we underestimate the 

maximum extent of the floodplain in this specific model grid, and indeed, the location of Porto 

Velho, is in the minority of model grids where the maximum inundation actually decreases 

with the implementation of the new MFF forcing file.   
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Chapter 3 Figure 10:a); Monthly (1980-2000) simulated (NCC) aquatic CO2 evasion versus 

simulated discharge on the Madeira River at Porto Velho and b); Observed aquatic CO2 

evasion versus observed on the Madeira River at Porto Velho, measured between 2009 and 

2011. 

The pattern of interannual variation in NEP over the 1980s and 1990s in our results is consistent 

with that found in previous modelling studies over the same period (Prentice and Lloyd, 1998; 

Tian et al., 1998). Interestingly we find smaller interannual variation than these previous 

modelling studies that did not include inland water fluxes, further supporting the idea that 

incorporating aquatic fluxes dampens the interannual variation in NEP. Indeed, a 2013 study 

(Wang et al., 2013) found results to suggest that some DGVMs overestimate the sensitivity of 

net ecosystem exchange (NEE) to precipitation. The relationship between our simulated NEP 

and precipitation is generally weaker than that found in previous models across the tropical 

region (Wang et al., 2013, in this case NEE), and the addition of the aquatic C fluxes appears 

to be at least partly responsible for this; the sum of terrestrial fluxes (NPP-SHR) is more 

strongly correlated with precipitation (detrended R2 = 0.58, p<0.0001 NCC run; detrended R2 

= 0.51, p<0.0001 with Princeton GPCC run) than NEP (detrended R2 = 0.27, p<0.05 NCC run; 

detrended R2 = 0.25, p<0.01 with Princeton GPCC run), which includes aquatic components.  

Despite some of the limitations of DGVMs discussed, namely their inability to fully capture 

the complex effects of droughts on NPP, the response of our model to drought events concurs 

with observational based studies, and most significantly to those based on the measurement of 
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atmospheric CO2 fluxes.  The 2010 Amazon drought was one of the most severe ever recorded 

and related to another El Nino event, as well as anomalous SSTs (Lewis et al., 2011). Gatti et 

al. (2014) used small aircraft to measure CO2 fluxes just above the Amazon rainforest (lower-

troposphere) and found that in 2010, the Amazon basin was a net source to the atmosphere of 

0.48± 0.18 Pg C yr-1. A 2015 study (van der Laan-Luijkx et al., 2015), further constrained the 

results of Gatti et al. using remote sensing data and estimated a smaller atmospheric CO2 source 

between 0.07 and 0.31 Pg C yr-1 for 2010. Based on our Princeton GPCC run, we similarly 

estimate that in 2010, the Amazon was an overall CO2 source for the atmosphere of 0.33 (0.35 

- 0.29) Pg C yr-1 (based on NBP). Additionally, using a combined remote sensing and modelling 

approach, Potter et al. (2011) estimated that the 2010 drought caused a loss of biomass in the 

Amazon of 0.50 Pg C yr-1 relative to the strong La Nina year of 2008, and we produce a similar 

NEP deficit 0.51 Pg C yr-1. 

In Figure 11, we show our simulated C budget for a drought year, 1998, and an anomalously 

wet year, 1989, to illustrate how both terrestrial and aquatic C fluxes react to climatic extremes. 

In 1989, high aquatic CO2 evasion to the atmosphere driven by high rainfall and large 

floodplain inundation, partly offsets a relatively large terrestrial sink, caused by high terrestrial 

NPP and low SHR. In 1998 the opposite occurs; low rainfall results in a low flux of CO2 from 

inland waters to the atmosphere, which moderates a relatively high SHR flux and low terrestrial 

NPP. As previously noted, aquatic CO2 evasion is highly sensitive to rainfall and in turn both 

discharge and inundation, and displays greater interannual variation than the terrestrial C 

fluxes. Aquatic CO2 evasion is positively correlated with NPP but the two fluxes represent 

opposite signals in terms of C exchange with the atmosphere, while aquatic CO2 evasion is 

inversely correlated to SHR, both fluxes being C sources for the atmosphere. For these two 

reasons, the aquatic fluxes generally act to compensate the difference between terrestrial NPP 

and SHR and thus dampen overall interannual variation in the net C balance.  
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Another process not accounted for in our model is C sequestration on floodplains. Interestingly, 

a 2003 study (Aalto et al., 2003) showed that, sediment accumulation on Amazon floodplains 

is closely linked to the ENSO cycle. Like our findings for aquatic CO2 evasion, sediment 

accumulation was found to be higher during La Nina years, and most notably in 1988. Despite 

not accounting for this C sink term in our model, the comparison of our net C balance for the 

Amazon (NBP) against observations (Grace et al., 2016) suggests that if anything we are still 

underestimating the net flux of C from the Amazon basin to the atmosphere.  

 

Chapter 3 Figure 11:Simulated annual C budget for left; the Amazon basin for the year 1989, 

and right; the Amazon basin for the year 1998, where NEP is net ecosystem production, NPP is 

terrestrial net primary productivity, TF is throughfall, SHR is soil heterotrophic respiration, 

FCO2 is aquatic CO2 evasion, LOAC is C leakage to the land-ocean aquatic continuum (FCO2 + 

𝐋𝐄Aquatic), and 𝐋𝐄Aquatic is the export C flux to the coast. Numbers refer to mean across the 

six simulations while numbers in parentheses refer to range. 

3.4.1. The importance of integrating the LOAC within the land carbon cycle 

The Amazon is facing a number of threats including climate change, land use change and dam 

construction (Nobre et al., 2016). Climatic events such as droughts and floods are becoming 

more frequent (Marengo et al., 2011; Gloor et al., 2013; Zulkafli et al., 2016), while southern 

Amazonia has experienced a general lengthening of the dry season (Fu et al., 2013). The region 
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is also undergoing a boom in dam construction with 140 dams under construction or already in 

operation, and a further 288 planned (Latrubesse et al., 2017) with direct impact on the C 

retention efficiency within the LOAC (Maavara et al., 2017). In addition, a recent study 

demonstrated that the lowland floodplain forests of the Amazon are less resilient to fires than 

terra firme forests (Flores et al., 2017). 

For these reasons, it is vital that the flood dynamics of the Amazon can be correctly represented 

in biogeochemical models. The implementation of a new floodplain forcing file based on high 

resolution SAR data substantially improves our ability to accurately simulate the seasonality 

in observed flooding. Moreover, it leads to a 97% increase in our estimate of mean annual CO2 

evasion from the river-floodplain aquatic continuum and supports some larger previous 

estimates based on simple upscaling approaches (Table S4). Our results show that the LOAC 

fluxes, highly sensitive to hydrological variation, display greater interannual variation than the 

terrestrial C fluxes (NPP – SHR), and are thus disproportionately important to the overall 

variation of the net C balance, relative to their magnitude. We also find that the percentage of 

NPP lost to the LOAC is variable at the interannual timescale (Fig. 11).  

Our results suggest that the linkage between the terrestrial and aquatic environment may be 

larger than previously thought and our estimate of aquatic CO2 evasion from the Amazon is of 

a globally significant magnitude in terms of aquatic C fluxes. However, these results must be 

placed within the context of their overall impact on the net C balance of the Amazon Basin. 

While greater inundation increases aquatic CO2 evasion, it simultaneously decreases the 

decomposition of organic matter in litter and soils and we show that the net impact of greater 

flooding is in fact a reduction in the flux of CO2 from the Amazon basin to the atmosphere. It 

is during years with the lowest precipitation, often associated with El Nino events that highest 

net flux of CO2 to the atmosphere are simulated. Indeed, we find that aquatic C fluxes partly 

compensate terrestrial C fluxes, and therefore moderate the overall interannual variation in 
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NEP. Thus, DGVMs that do not account for aquatic fluxes may overestimate the magnitude of 

interannual variation in NEP. This calls for a fully integrated view of the land carbon cycle, 

which cannot be achieved with empirical studies alone and highlights the value of a model that 

can integrate the terrestrial and aquatic C cycles. 
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3.5. Supporting Information 

Chapter 3 Table S 1: Observed and simulated interannual variation in discharge at Obidos 

Year Discharge 

Observed 

Discharge- 

NCC  

Discharge-

Princeton GPCC  

Discharge-NCC Old 

MFF & MFS 

1980 144,370 147,285 149,910 139,553 

1981 153,225 166,707 164,040 161,241 

1982 182,842 212,865 191,576 202,947 

1983 143,687 171,066 149,387 165,846 

1984 175,450 199,124 175,196 189,411 

1985 164,633 175,744 160,053 168,478 

1986 183,717 186,200 185,116 177,521 

1987 166,811 164,406 161,826 159,829 

1988 167,403 172,462 175,977 165,191 

1989 199,050 203,105 193,973 193,937 

1990 168,582 176,768 162,801 170,335 

1991 171,414 182,388 172,742 176,686 

1992 139,094 145,868 138,766 140,125 

1993 180,933 182,199 189,133 173,582 

1994 196,483 184,887 185,723 179,884 

1995 154,871 163,971 154,392 157,061 

1996 180,167 179,224 166,462 172,236 

1997 169,687 162,210 153,735 157,735 

1998 149,533 146,927 134,056 140,562 

1999 185,917 186,924 170,880 180,278 

2000 181,942 181,013 182,018 172,380 

RMSE % 7 4 6 

NSE 0.50 0.79 0.62 

R2 0.66 0.81 0.67 

 

Chapter 3 Table S 2: Pearson correlation coefficient (r) between the various carbon fluxes and 

climate variables (NCC climate data). NPP is terrestrial net primary productivity, SHR is soil 

heterotrophic respiration, FCO2 is aquatic CO2 evasion, NEP is net ecosystem production, MEI is 

multivariate ENSO Index and LEAquatic is the export C flux to the coast. 

  SHR FCO2  LEAquatic NEP Rain. Temp. Year MEI 

NPP 0.14 0.33 0.43 0.97 0.43 -0.19 0.68 -0.51 

SHR 1.00 -0.79 -0.44 0.10 -0.44 0.38 0.40 0.19 

Aquatic CO2 
evasion 

 
1.00 0.69 0.25 0.74 -0.41 0.02 -0.36 

Lateral C 
  

1.00 0.36 0.79 -0.55 -0.01 -0.75 

NEP 
   

1.00 0.34 -0.19 0.62 -0.51 

Rain 
    

1.00 -0.68 -0.10 -0.56 

Temp. 
     

1.00 0.44 0.68 

Year        -0.07 
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Chapter 3 Table S 3: Pearson correlation coefficient (r) between the various carbon fluxes 

and climate variables (Princeton GPCC climate data). NPP is terrestrial net primary 

productivity, SHR is soil heterotrophic respiration, FCO2 is aquatic CO2 evasion, NEP is net 

ecosystem production, MEI is multivariate ENSO Index and LEAquatic is the export C flux to 

the coast. 

  SHR FCO2  LEAquatic NEP Rain. Temp. Year MEI 

NPP 0.41 0.62 0.51 0.86 0.48 0.19 0.71 -0.53 

SHR 
 

-0.15 -0.18 0.01 -0.28 0.72 0.79 0.03 

Aquatic CO2 
evasion 

  
0.80 0.47 0.75 0.01 0.39 -0.48 

Lateral C 
   

0.44 0.86 -0.25 0.18 -0.74 

NEP 
    

0.48 -0.21 0.30 -0.53 

Rain 
     

-0.40 0.03 -0.64 

Temp. 
      

0.72 0.36 

Year        -0.16 

 

Chapter 3 Table S 4: Mean annual CO2 evasion from the river-floodplain network of the 

Amazon Basin (Tg C yr-1) 

 NCC  

(standard 

MFF, 1980-

2000) 

Princeton 

GPCC 

(standard 

MFF, 1980-

2010) 

Lauerwald et 

al., 2017 (1980-

2000) 

Richey et al., 

2002 (1995-

1996) 

Rasera et al., 

2013  

(2006-2010) 

Amazon Basin 758 725 379 470 800 

Central 

Amazon Basin 

341 (45%) 318 (44%) 229 (60%) 210 (45%) 360 (45%) 

High flow 

(central) 

252 (74%) 235 (74%) / / 290 (81%) 

Low flow 

(central) 

89 (26%) 83 (26%) / / 70 (19%) 

 

Chapter 3 Table S 5: Performance statistics for modelled vs observed DOC flux 

for different model configurations 

NCC 𝜏flood 1.4 Princeton GPCC 𝜏flood 1.4 Old floodplain NCC 𝜏flood 

1.4 

Location RSME NSE R2 RSME NSE R2 RSME NSE R2 

Rio Negro at 

Serrinha 

28% 0.74 0.84 34% 0.62 0.78 21% 0.85 0.91 

Amazon at 

Obidos 

40% -0.32 0.62 33% 0.14 0.59 24% 0.52 0.58 

Rio 

Solimoes at 

Manacapuru 

30% 0.34 0.52 27% 0.44 0.49 33% 0.20 0.41 

Amazon at 

Vargem 

Grande 

40% -0.08 0.50 21% 0.71 0.72 30% 0.41 0.68 
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Chapter 3 Table S 6: Pearson correlation coefficient (r) between detrended carbon fluxes and 

detrended climate variables (NCC climate data). NPP is terrestrial net primary productivity, 

SHR is soil heterotrophic respiration, FCO2 is aquatic CO2 evasion, NEP is net ecosystem 

production, MEI is multivariate ENSO Index and LEAquatic is the export C flux to the coast. 

  SHR FCO2  LEAquatic NEP Rain. Temp. MEI 

NPP -0.19 0.43 0.60 0.95 0.69 -0.75 -0.63 

SHR 
 

-0.87 -0.47 -0.21 -0.44 0.25 0.23 

Aquatic CO2 
evasion 

  
0.69 0.31 0.74 -0.46 -0.36 

Lateral C 
   

0.47 0.80 -0.61 -0.75 

NEP 
    

0.52 -0.67 -0.60 

Rain 
     

-0.71 -0.58 

Temp.       0.80 

 

Chapter 3 Table S 7: Pearson correlation coefficient (r) between detrended carbon fluxes 

and detrended climate variables (Princeton GPCC climate data). NPP is terrestrial net 

primary productivity, SHR is soil heterotrophic respiration, FCO2 is aquatic CO2 evasion, 

NEP is net ecosystem production, MEI is multivariate ENSO Index and LEAquatic is the 

export C flux to the coast. 

  SHR FCO2  LEAquatic NEP Rain. Temp. MEI 

NPP -0.34 0.53 0.55 0.96 0.66 -0.66 -0.59 

SHR 
 

-0.81 -0.54 -0.38 -0.49 0.36 0.25 

Aquatic CO2 
evasion 

  
0.80 0.40 0.80 -0.43 -0.45 

Lateral C 
   

0.41 0.87 -0.56 -0.72 

NEP 
    

0.50 -0.64 -0.51 

Rain 
     

-0.61 -0.63 

Temp.       0.69 
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Chapter 3 Figure S 1:the geographical extent of the Amazon basin, and its central quadrant, 

along with major monitoring stations on the Amazon, Rio Madeira (Porto Velho), and Rio 

Negro (Serrinha). 

Chapter 3 Table S 8: Climate sensitivities of C fluxes in Tg C yr-1 per 100mm increase in 

rainfall and 1 °C increase in temperature, for the NCC run (standard MFF) based on simple 

linear regression. NS = not significant (p>0.05). NEP is net ecosystem production, NPP is 

terrestrial net primary productivity, SHR is soil heterotrophic respiration, FCO2 is aquatic 

CO2 evasion, and LEAquatic is the export C flux to the coast. 

 NPP FCO2  SHR LEAquatic NEP NPP-SHR 

Change per 

100mm ↑ in 

rain. 

89 60 -31 4 57 120 

Change per 

1 °C ↑ in 

temp. 

-462 -179 NS -14 -354 -546 

 

Chapter 3 Table S 9: Climate sensitivities of C fluxes in Tg C yr-1 per 100mm increase in 

rainfall and 1 °C increase in temperature, for the Princeton GPCC run (standard MFF) 

based on simple linear regression. NS = not significant (p>0.05). NEP is net ecosystem 

production, NPP is terrestrial net primary productivity, SHR is soil heterotrophic 

respiration, FCO2 is aquatic CO2 evasion, and LEAquatic is the export C flux to the coast. 

 NPP FCO2  SHR LEAquatic NEP NPP-SHR 

Change per 

100mm ↑ in rain. 

113 65 -34 4.4 78 147 

Change per 1 °C 

↑ in temp. 

-566 -174 123 -14 -503 -689 

        Amazon basin 

        Central quadrant   

 Serrinha 

Vargem 

Grande 

Porto velho 

Manacapuru 

Obidos 
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Chapter 3 Table S 10: Climate sensitivities of C fluxes in Tg C yr-1 per 100mm increase in rainfall 

and 1 °C increase in temperature, for the NCC run (standard MFF) based on multiple linear 

regression (with both rainfall and temperature as independent variables). NS = not significant 

(p>0.05). NEP is net ecosystem production, NPP is terrestrial net primary productivity, SHR is soil 

heterotrophic respiration, FCO2 is aquatic CO2 evasion, and LEAquatic is the export C flux to the 

coast. 

 NPP FCO2  SHR LEAquatic NEP NPP-SHR 

Change per 

100mm ↑ in rain. 

NS 68 NS 3.6 NS 79 

Change per 1 °C ↑ 

in temp. 

-320 NS NS NS -323 NS 

 

Chapter 3 Table S 11: Climate sensitivities of C fluxes in Tg C yr-1 per 100mm increase in rainfall 

and 1 °C increase in temperature, for the Princeton GPCC run (standard MFF) based on multiple 

linear regression (with both rainfall and temperature as independent variables). NS = not significant 

(p>0.05). NEP is net ecosystem production, NPP is terrestrial net primary productivity, SHR is soil 

heterotrophic respiration, FCO2 is aquatic CO2 evasion, and LEAquatic is the export C flux to the 

coast. 

 NPP FCO2  SHR LEAquatic NEP NPP-SHR 

Change per 

100mm ↑ in 

rain. 

70 70 -30 4.3 NS 100 

Change per 1 

°C ↑ in temp. 

-352 NS NS NS -422 -385 
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Chapter 3 Figure S 2: Present day (1981-2010) spatial distribution of the principal climate and 

land-use drivers used in ORCHILEAK, across the Amazon Basin; a) mean annual temperature 

in °C, b) mean annual rainfall in mm yr-1, c)-g) mean annual maximum vegetated fraction for 

PFTs 2,3, 10,11, and 13, h) river area. All at a resolution of 1° except for river area (0.5°). 
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4. Historic and future trends of aquatic carbon fluxes integrated within 

the Congo Basin carbon balance 

Abstract 

As the world’s second largest area of contiguous tropical rainforest and second largest river 

basin, the Congo basin plays an important role in the global carbon (C) cycle. Research has 

shown that terrestrial net primary productivity (NPP) and C storage in tree biomass has 

increased in recent decades in tropical Africa, due in large part to a combination of increasing 

atmospheric CO2 concentrations and climate change. For the present day, it has been shown 

that a significant proportion of global terrestrial NPP is transferred laterally to the land-ocean 

aquatic continuum (LOAC) as dissolved organic carbon (DOC), particulate organic carbon 

(POC) and dissolved CO2. Whilst the importance of LOAC fluxes in the Congo basin has been 

demonstrated for the present day, it is not known to what extent these fluxes have been 

perturbed historically, how they are likely to change under future climate change and land use 

scenarios, and in turn what impact these changes might have on the overall C cycle of the 

Congo. Here we apply the ORCHILEAK model to the Congo Basin and show that aquatic C 

fluxes have undergone considerable perturbation since 1861 to the present day, with CO2 

evasion and the export of C to the coast increasing by 28% and 29% respectively, largely 

because of rising atmospheric CO2 concentrations.  Moreover, under RCP 6.0 we predict that 

this perturbation will continue; over the full simulation period (1861-2099), we estimate that 

aquatic CO2 evasion and the export of C to the coast will increase by 79% and 67% 

respectively. Finally, we show that the proportion of NPP lost to the LOAC also increases from 

approximately 3% to 5% from 1861-2099 as a result of both atmospheric CO2 concentrations 

and climate change. 
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4.1. Introduction 

As the world’s second largest area of contiguous tropical rainforest and second largest river 

basin, the Congo basin plays an important role in the global carbon (C) cycle. Around 50 Pg C 

is stored in its above ground biomass (Verhegghen et al., 2012) while its peatlands contain 

another 30 Pg C (Dargie at al., 2017). Research has shown that terrestrial net primary 

productivity (NPP) has increased by an average of 10 g C m-2 yr-1 per year between 2001 and 

2013 in tropical Africa (Yin et al., 2017), while storage in tropical tree biomass has increased 

by 0.34 Pg C yr-1 from 1968-2007 (Lewis et al., 2009) due in large part to a combination of 

increasing atmospheric CO2 concentrations and climate change (Ciais et al., 2009; Pan et al., 

2015). Moreover, these trends are predicted to continue into the future. It has also been 

evidenced that terrestrial NPP across the African continent varies by around 1.6 Pg C yr-1 

between wet and dry years, though tropical evergreen forest NPP was shown to be the least 

variable with a coefficient of variation of 3.9% (Pan et al., 2015). 

For the present day, it has been shown that a significant proportion of global terrestrial NPP is 

transferred laterally to the land-ocean aquatic continuum (LOAC) as dissolved organic carbon 

(DOC), particulate organic carbon (POC) and dissolved CO2 (Cole at al., 2007; Battin et al., 

2009; Regnier et al., 2013; Ciais et al. in review). This C can subsequently be evaded back to 

the atmosphere as CO2, undergo sedimentation in wetlands and inland waters, or be transported 

to estuaries or the coast. The tropical region is a hotspot area for inland water C cycling 

(Lauerwald et al., 2015) due to high terrestrial NPP and precipitation, and a recent study used 

an upscaling approach based on limited observations to estimate present day CO2 evasion from 

the rivers of the Congo basin at 133-177 Tg C yr-1 and the lateral C (TOC +DIC) export to the 

coast at 15.5 (13-18) Tg C yr-1 (Borges at al., 2015a). To put this into context, their estimate of 

aquatic CO2 evasion represents 20- 27% of the global value estimated by Lauerwald et al. 
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(2015, 650 Tg C yr-1) or 7-10% of the global estimate of Raymond et al. (2013, 1,800 Tg C yr-

1).  

Whilst the importance of LOAC fluxes in the Congo basin has been demonstrated for the 

present day, it is not known to what extent these fluxes have been perturbed historically, how 

they are likely to change under future climate change and land use scenarios, and in turn what 

impact these changes might have on the overall C cycle of the Congo. With these knowledge 

gaps in mind, we aim to tackle the following research questions: 

• To what extent have LOAC fluxes (CO2 evasion and C export to the coast) changed 

from 1860 to the present day and what are the primary drivers of this change? 

• How will these fluxes change under future climate and land use change scenarios (RCP 

6.0 which represents the “no mitigation scenario”)? 

• What does the temporal evolution of LOAC fluxes mean for the wider C balance of the 

Congo Basin? 

Understanding and quantifying these long-term changes requires a complex and integrated 

modelling approach. The ORCHILEAK model (Lauerwald et al., 2017), a new version of the 

land surface model ORCHIDEE (Krinner et al., 2005), is capable of representing both 

terrestrial and aquatic C fluxes for the present day in the Amazon basin (Lauerwald et al., 

2017). Moreover, it was recently demonstrated that it can also recreate observed seasonal and 

interannual variation in Amazon C fluxes (Hastie et al., accepted). 

In order to accurately simulate aquatic C fluxes, it is crucial that we can provide a realistic 

representation of the hydrological dynamics of the Congo River, including wetlands. Here, we 

develop new wetland forcing files for the ORCHILEAK model from the high-resolution dataset 

of Gumbricht et al. (2017) and apply the model to the Congo basin.  After validating the model 

against observations of discharge, flooded area and DOC concentrations for the present day, 
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we then use the model to understand and quantify the long- term (1860-2100) temporal trends 

in both the terrestrial and aquatic C fluxes of the Congo Basin.  

4.2. Methods 

ORCHILEAK is a new branch of the ORCHIDEE land surface model (LSM), building on past 

model developments such as ORCHIDEE-SOM (Camino Serrano, 2015), and represents the 

first LSM-based approach which fully integrates the aquatic C cycle within the terrestrial.  In 

this study, as in previous (Lauerwald et al., 2017, Hastie et al. accepted), we run the model at 

a spatial resolution of 1° and use the default time step of 30 min for all vertical exchanges of 

C, water and energy between soil, vegetation and the atmosphere, as well as the 1-day times-

step for the lateral routing of water. Until now, ORCHILEAK has been parameterized and 

calibrated only for the Amazon Basin (Lauerwald et al., 2017, Hastie et al. accepted). In order 

to adapt and apply ORCHILEAK to the specific characteristics of the Congo River basin (2.1), 

we had to establish new forcing files representing the maximal fraction of floodplains (MFF) 

and the maximal fraction of swamps (MFS) (2.2) and to recalibrate the river routing module of 

ORCHILEAK (2.3). All of the processes represented in ORCHILEAK remain identical to 

those previously represented for the Amazon ORCHILEAK (Lauerwald et al., 2017). In the 

following methodology sections, we describe; 2.1- Site description, 2.2- Development of 

wetland forcing files, 2.3- Calibration of hydrology, 2.4- Simulation set-up, 2.5- Evaluation 

and analysis of simulated fluvial C fluxes, and 2.6- Calculating the net carbon balance of the 

Congo Basin. For a full description of the ORCHILEAK model please refer to sections Chapter 

3 and Appendix 8.1. 

4.2.1. Site description 

The Congo Basin is the world’s second largest area of contiguous tropical rainforest and second 

largest river basin (Fig. 1), covering an area of 3.7 x106 km2, with a mean discharge of around 
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42,000 m-3 s-1 (O'Loughlin et al., 2013) and a monthly variation of between 24,700–75,500 m-

3 s-1 (Coynel et al., 2005).   

 

Chapter 4 Figure 1:Extent of the Congo Basin, central quadrant of the “Cuvette Centrale” and 

sampling stations along the Congo and Ubangi Rivers. 

The major climate (ISMSIP2b) and land-cover (LUH-CMIP5) characteristics of the Congo 

Basin for the present day (1981-2010) are shown in Figure 2. The mean annual temperature is 

25.2 °C but with considerable spatial variation from a low of 18.4°C to a high of 27.2°C (Fig. 

2 a), while mean annual rainfall is 1520mm, varying from 733 mm to 4087 mm (Fig. 2 b). 

Land-use is mixed with tropical broad-leaved evergreen (PFT2, Fig. 1 c), tropical broad-leaved 

rain green (PFT3, Fig. 1 d), C3 grassland (PFT10, Fig. 2 e) and C4 grassland (PFT11, Fig. 2 f) 

covering a maximum of 25%, 35%, 15% and 25% of the basin area respectively. Agriculture 

covers only a small proportion of the basin, with C3 (Fig. 2 g) and C4 (Fig. 2 h) agriculture 

making up a maximum basin area of 4 and 3% respectively. Note that the fractions add up to a 

little over 100% as they represent the maximum vegetated fraction over the course of a year.  

        Congo basin 

        Stations 

        Central quadrant 

 

Brazzaville 

Station a) 

Station b) 

Station c) 

Station d) 

Bangui 
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Chapter 4 Figure 2: Present day (1981-2010) spatial distribution of the principal climate and 

land-use drivers used in ORCHILEAK, across the Congo Basin; a) mean annual temperature in 

°C, b) mean annual rainfall in mm yr-1, c)-h) mean annual maximum vegetated fraction for 

PFTs 2,3, 10,11,12 and 13, i) river area. All at a resolution of 1° except for river area (0.5°). 
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4.2.2. Development of wetland forcing files 

We created an MFF forcing file for the Congo basin, derived from the 232m resolution dataset 

of Gumbricht et al. (2017) (Fig. 3 a and b). We firstly merged all of the wetland categories of 

the Gumbricht dataset before aggregating them to a resolution of 0.5° (the resolution of the sub 

grid basins in ORCHILEAK), to represent the maximum extent of inundation in the basin. This 

results in a mean MFF of 10.3%, i.e. a maximum of 10.3% of the surface area of the Congo 

basin can be inundated with water. This is very similar to the mean MFF value of 10% produced 

with the Global Lakes and Wetlands Database, GLWD (Lehner, & Döll, P.,2004; Borges et al., 

2015b). We also created an MFS forcing file from the same dataset (Fig. 3 c) and d), merging 

the ‘swamps’ and ‘fens’ wetland categories and again aggregating them to a 0.5° resolution.  

 

a) b) 

c) d) 

Chapter 4 Figure 3: a) Wetland extent (from Gumbricht et al., 2017). b) The new maximal fraction 

of floodplain (MFF) forcing file derived from from a). c) Swamps (including ferns) classification 

within Congo Basin from Gumbricht et al (2017).  d) the new maximal fraction of swamps (MFS) 

forcing file derived from c). Panels a) and b) are at the same resolution as the Gumbricht dataset 

(232m) while b) and d) are at a resolution of 0.5°. Note that 0.5° is the resolution of the sub unit 

basins in ORCHILEAK (Lauerwald et all., 2015), with each 1° grid containing four sub basins. 
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4.2.3 Calibration of hydrology  

As the main driver of the export of C from the terrestrial to aquatic system, it is crucial that the 

model can represent present day hydrological dynamics, at the very least on the main stem of 

the Congo. As this study is primarily concerned with decadal- centennial timescales our priority 

was to ensure that it can accurately recreate observed mean annual discharge at the most 

downstream gauging station Brazzaville, however we also tested its ability to simulate 

observed seasonality, as well as flood dynamics. Moreover, no data is available with which to 

directly evaluate the simulation of DOC and CO2 exports from the soil to the river network, 

and thus we tested the model’s ability to recreate the spatial variation of observed riverine DOC 

concentrations (Borges at al., 2015b), which can be regarded as an integrator of the C transport 

at the terrestrial- aquatic interface.  

We first ran the model for the present day (in this case defined as 1990-2005/2010 depending 

on which climate forcing data was applied) using four climate forcing datasets; namely 

Princeton GPCC (Sheffield et al., 2006), ISIMIP2b (Frieler et al., 2017), GSWP3 (Kim., 2017) 

and CRUNCEP (Viovy., 2018), to assess which configuration is best able to recreate observed 

discharge on the Congo River at Brazzaville (Fig. 1), the most downstream river gauging 

station. After deciding to proceed with ISIMIP2b (see proceeding paragraphs), we calibrated a 

number of hydrological model parameters, namely the constants which dictate the water 

residence time of the slow, fast and floodplain reservoirs. In order to improve the simulation 

of observed discharge at Brazzaville, we reduced the residence time of all three reservoirs 

(compared to those values used in the original ORCHILEAK calibration for the Amazon, 

Lauerwald at al., 2017).  

In order to evaluate the simulated discharge against observations, we first calibrated the flood 

dynamics of ORCHILEAK in the Congo Basin for the present day by calculating a number of 
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statistical parameters (Lauerwald et al., 2017). For each configuration, we ran the model once 

before calculating the median water storage for each grid cell (see Lauerwald et al., 2017). This 

represents the bank-full discharge (Table 1) for each grid cell; any water in excess of this value 

will start to inundate the floodplains. After re-running each model configuration with the new 

median water storage values, we calculated the 95th percentile of water level heights over the 

simulation period for each grid cell (Table 1). This value represents water level over the river 

banks at which the maximum horizontal extent of inundation (MFF) is reached. Each model 

configuration model was then re-run for a final time and the outputs were then validated against 

discharge data at Brazzaville (Cochonneau et al., 2006, Fig. 1). This procedure was repeated 

iteratively with the ISIMIP2b climate forcing, modifying the water residence times of each 

reservoir in order to find the best performing parametrization, as discussed in the previous 

section. 

Limited observed discharge data is available for the Congo basin, with the majority 

concentrated on the main stem of the Congo, at Brazzaville station. After identifying ISIMIP2b 

the best performing climate dataset, we used the data of Bouillon et al. (2014) to further validate 

discharge at Bangui (Fig. 1) on the River Ubangi and additionally compared the simulated 

seasonality of flooded area against the satellite derived dataset GIEMS (Prigent et al., 2007; 

Becker et al., 2018), within the Cuvette Centrale wetlands (Fig. 1).   

4.2.3. Simulation set-up 

A list of the forcing files used, along with data sources, is presented in Table 1. The derivation 

of the wetland and swamp (MFF & MFS) is described in section 2.2 while the calculation of 

“bankfull discharge” and “95th percentile of water table height over flood plain” (Table 1) is 

described in the preceding section (2.3). The “poor soils” forcing file (Fig. S3 a) is derived 

from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009), which 
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prescribes reduced decomposition rates in low pH and nutrient soils such as Podzols and 

Arenosols. 

4.2.3.1. Soil carbon spin up 

In order for the soil C pools to reach approximately steady state, we spun-up the model for 

approximately 9,000 years, with fixed land-use representative of 1861, and looping over the 

first 30 years of the ISMSIP2b climate forcing data (1861-1890). During the first 2,000 years 

of spin-up, we ran the model with a higher atmospheric CO2 concentration of 350 µatm and 

default soil carbon residence time (𝜏carbon) values halved, which allowed us to reach a steady-

state more quickly. Following this, we ran the model for a further 7,000 years reverting to the 

default 𝜏carbon values. At the end of this process, the soil C pools had reached approximately 

steady state; <0.02% change in each pool over the last century of the spin up. Prior to 1861, we 

assume that the soil C was in quasi steady state. 

4.2.3.2. Transient simulations 

After the spin-up, we ran a historical simulation from 1861 until the present day, 2005 in the 

case of the ISMSIP2b climate forcing data. We then ran a future simulation with the IPSL-

CM5A-LR model outputs for RCP 6.0 (Frieler et al., 2017) until 2099, using the final year of 

the historical simulation as a restart file. In both of these simulations, climate, atmospheric CO2 

and land-use change were fully transient. As our aim is to investigate long-term trends, we 

calculated the 30-year running means of simulated C flux outputs in order to suppress 

interannual variation. RCP 6.0 is an emissions pathway that leads to a “stabilization of radiative 

forcing at 6.0 Watts per square meter (Wm−2) in the year 2100 without exceeding that value in 

prior years” (Masui et al., 2011). It is characterised by intermediate energy intensity, substantial 

population growth, mid-high C emissions, increasing cropland area to 2100 and decreasing 

natural grassland area (van Vuuren et al., 2011). In the paper which describes the development 

of the future land use change scenarios under RCP 6.0 (Hurtt et al., 2011), it is shown that land 
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use change is highly sensitive to model set up, such as the choice of historical start date of, and 

whether or not shifting cultivation is included. Moreover, Africa is one the regions with the 

largest uncertainty range, and thus, there is considerable uncertainty associated with the effect 

of future land-use change (Hurtt et al., 2011). We chose RCP 6.0 as it represents a no mitigation 

(mid-high emissions) scenario and because it was the scenario applied in the recent paper of 

Lauerwald et al. (submitted) to examine the long-term LOAC fluxes in the Amazon basin. 

Therefore, we can directly compare our results for the Congo to those for the Amazon. 

Moreover, the ISIMIP2b data only follows two RCPs; RCP 2.6 (low emission) and RCP 6.0. 

With the purpose of evaluating the effect of climate change, land-use change and rising 

atmospheric CO2, we ran a series of control simulations. In each control simulation, one of 

these factors was fixed at its 1861 level (the first year of the simulation), or in the case of 

climate change looped over the years 1861-1890.  The outputs of these simulations (also 30-

year running means) were then subtracted from the outputs of the fully transient (original run) 

so that we could determine the contribution of each driver (Fig. 10, Table 1). 

Chapter 4 Table 1: Forcing files used for simulations 

Variable  Spatial 

resolution 

Temporal 

resolution 

Data source 

Rainfall, Snowfall, Incoming shortwave 

and longwave radiation, Air 

Temperature, Relative humidity and Air 

pressure (close to surface), Wind speed 

(10 m above surface) 

1° 1 day ISIMIP2b, IPSL-CM5A-LR 

model outputs for RCP6.0 

(Frieler et al., 2017)  

Land cover (and change) 0.5° annual LUH-CMIP5 

Atmospheric CO2 1° annual ISIMIP2b, IPSL-CM5A-LR 

model outputs for RCP6.0 

(Frieler et al., 2017)  

Soil texture class 0.5° annual Reynolds et al. (1999) 

Soil pH, bulk density 0.5° annual after HWSD v 1.1 

(FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2009) 

Poor soils 0.5° annual after HWSD v 1.1 

(FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2009) 

Stream flow directions 0.5° annual STN-30p (Vörösmarty et al., 

2000) 
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Floodplains and swamps (MFF & MFS) 0.5° annual derived from Gumbricht et 

al. (2017)  

River surface areas 0.5° annual Lauerwald et al. (2015) 

Bankfull discharge 1° annual derived from pre-runs with 

ORCHILEAK (see text) 

95th percentile of water table height 

over flood plain 

1° annual derived from pre-runs with 

ORCHILEAK (see text) 

4.2.4. Evaluation and analysis of simulated fluvial C fluxes 

We first evaluated simulated DOC concentrations at several locations along the Congo 

mainstem, and on the Ubangi river against the data of Borges at al. (2015b). We also compared 

the various simulated components of the net C balance (e.g., NPP) of the Congo against values 

described in the literature. In addition, we assessed the relationship between the interannual 

variation in present day C fluxes of the Congo basin and variation in temperature and rainfall. 

This was done through linear regression using STATISTICATM. We found decadal trends in 

several of the fluxes and thus detrended the time series using the Detrend function within the 

“SpecsVerification” package in R (R Core Team 2013) before undertaking the statistical 

analysis. 

4.2.5. Calculating the net carbon balance of the Congo Basin 

We calculated the Net Ecosystem Production (NEP) by summing the terrestrial and aquatic C 

fluxes of the Congo basin (Eq. 1), while we also incorporated disturbance fluxes (Land-use 

change flux and harvest flux) to calculate Net Biome Production (NBP) (Eq. 2). Positive values 

of NEP and NBP equate to a net terrestrial C sink. 

We define NEP as follows: 

                           𝑁𝐸𝑃 = 𝑁𝑃𝑃 + 𝑇𝐹 − 𝑆𝐻𝑅 − 𝐹𝐶𝑂2 − 𝐿𝐸Aquatic                                              (1)      

Where NPP is terrestrial net primary production, TF is the throughfall flux of DOC, SHR is 

soil heterotrophic respiration (only the part evading from the soil surface); FCO2 is CO2 

evasion from the water surface and 𝐿𝐸Aquatic is the export flux of C to the coast. NBP is the 
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same as NEP but with the addition of the C lost (or gained) through land use change (LUC) 

and crop harvest (Harvest). LUC includes emissions from fires and the lateral export of woody 

biomass: 

                              𝑁𝐵𝑃 = 𝑁𝐸𝑃 − (𝐿𝑈𝐶 + 𝐻𝑎𝑟𝑣𝑒𝑠𝑡)                                                                (2)              

4.3. Results  

4.3.1. Representation of Hydrology  

Without calibration, the majority of the different climate forcing model runs performed poorly, 

unable to accurately represent the seasonality nor the mean monthly discharge at Brazzaville 

(Table S1. Fig. 1). The best performing climate forcing dataset was ISIMIP2b followed by 

Princeton GPCC with root mean square errors (RMSE) of 29% and 40% and Nash Sutcliffe 

efficiencies (NSE) of 0.20 and -0.25, respectively. NSE is a statistical coefficient specifically 

used to test the predictive skill of hydrological models (Nash & Sutcliffe, 1970). As the clear 

best performing climate dataset, we chose to proceed with ISIMIP2b. After calibrating various 

model parameters, namely the residence times of the fast, slow and floodplain hydrological 

reservoirs (Lauerwald et al., 2017), we were able to further improve the simulation of 

discharge. The final model configuration is able to closely simulate the mean monthly 

discharge at Brazzaville (Fig. 4 a), Table 2) and is also able to represent the seasonality 

moderately well (Fig. 4 a), Table 2, RMSE =23%, R2 =0.84 versus RMSE= 29% and R2 =0.23 

without calibration, Table S1). At Bangui on the Ubangi River (Fig. 1), the model is able to 

closely recreate observed seasonality (Fig. 4 b), RMSE =59%, R2 =0.88) but substantially 

underestimates the mean monthly discharge, our value being only 50% of the observed. We 

produce reasonable NSE values of 0.66 and 0.31 for Brazzaville and Bangui respectively, 

indicating that the model is relatively accurate in its simulation of seasonality. 
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We also evaluated the simulated seasonal change in flooded area in the central (approx. 

200,000 km2, Fig. 1) part of the Cuvette Centrale wetlands against the GIEMS inundation 

dataset (1993-2007, maximum inundation minus minimum or permanent water bodies, Prigent 

et al., 2007; Becker et al., 2018). While our model is able to represent the seasonality in flooded 

area relatively well (R2 =0.75 Fig. 4 c), it considerably overestimates the magnitude of flooded 

area relative to GIEMS (Fig. 4 c, Table 2). However, the dataset that we used to define the 

MFF and MFS forcing files (Gumbricht et al., 2017) is produced at a higher resolution than 

GIEMS and will capture smaller wetlands than the GIEMS dataset, and thus the greater flooded 

area is to be expected. GIEMS is also known to underestimate maximum inundation as it based 

on space-borne remote sensing data that is unable to capture the smallest inundated areas 

(Lauerwald et al., 2015; Hastie et al., accepted). Indeed, with the GIEMS data we produce an 

overall MFF for the Congo Basin of just 3%, less than one-third of that produced with the 

Gumbricht dataset (Gumbricht et al., 2017). As such, it is to be expected that there is a large 

RMSE (272%, Table 2) between simulated flooded area and GIEMS; more importantly, the 

seasonality of the two is highly correlated (R2 = 0.67, Table 2). Overall the hydrological 

performance of the model against several published datasets is satisfactory as the main purpose 

of this study is to estimate the long-term changes of aquatic C fluxes. The most important result 

is that it can closely recreate the mean monthly/ annual discharge at Brazzaville (Table 2), the 

most downstream gauging station on the Congo (Fig. 1). As such, we consider the hydrological 

performance to be sufficiently good for our aims.  
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Chapter 4 Table 2: Performance statistics for modelled versus observed 

seasonality of discharge with calibrated ISIMIP climate forcing 

Station RSME NSE R2 Simulated 

mean 

monthly 

discharge 

(m3 s-1) 

Observed  

mean 

monthly 

discharge 

(m3 s-1) 

Brazzaville 23% 0.66 0.84 38,944 

 

40,080 

Bangui 59% 0.31 0.88 1,448 

 

2,923 

 

Chapter 4 Figure 4: Seasonality of simulated versus observed discharge at a) Brazzaville on 

the Congo (Cochonneau et al., 2006), b) Bangui on the Ubangi (Bouillon et al., 2014) 1990-

2005 monthly mean and c) flooded area in the the central (approx. 200,000 km2) area of the 

Cuvette Centrale wetlands versus GIEMS (1993-2007, Becker et al., 2018). The observed 

flooded area data represents the maximum minus minimum (permanent water bodies such 

as rivers) GIEMS inundation. See Figure S1 for locations 
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4.3.2. Carbon fluxes along the Congo basin for the present day 

For the present day (1981-2010) we estimate a mean annual terrestrial net primary production 

(NPP) of 5,800 ±166 (standard deviation, SD) Tg C yr-1 (Fig. 5), corresponding to a mean areal 

C fixation rate of approximately 1,500 g C m-2 yr-1 (Fig. 6 a). We find a strong positive 

correlation between the interannual variation of NPP and rainfall (detrended R2= 0.41, p<0.001, 

Table S2) and a moderate negative correlation between annual NPP and temperature (detrended 

R2= 0.32, p<0.01, Table S2).  We also see considerable spatial variation in NPP across the 

Congo Basin (Fig.6 a). 

We simulate a mean soil heterotrophic respiration (SHR) of 5,300 ±99 Tg C yr-1 across the 

Congo basin (Fig. 5). Contrary to NPP, interannual variation in annual SHR is positively 

correlated with temperature (detrended R2= 0.57, p<0.0001, Table S2) and inversely correlated 

with rainfall (detrended R2= 0.10), though the latter relationship is not significant (p>0.05).  

We estimate a mean annual aquatic CO2 evasion of rate of 1,363 ±83 g C m-2 yr-1, amounting 

to a total of 235±54 Tg C yr-1 across the total water surfaces of the Congo basin (Fig. 5) and 

attribute 85% of this flux to flooded areas, meaning that only 32 Tg C yr-1 is evaded directly 

from the river surface. Interannual variation in aquatic CO2 evasion (1981-2010) shows a 

strong positive correlation with rainfall (detrended R2= 0.75, p<0.0001, Table S2) and a weak 

negative correlation with temperature (detrended R2=0.09, not significant, p>0.05). Aquatic 

CO2 evasion also exhibits substantial spatial variation (Fig.6, d), displaying a similar pattern to 

both DOC leaching (DOCinp) (R
2= 0.81, p<0.0001, Fig.6, b) as well as CO2 leaching (CO2inp) 

Flooded 

area 

(Cuvette 

Centrale) 

272% -1.44 0.67 Simulated 

mean 

monthly 

flooded area 

(103 km2) 

Observed 

mean 

monthly 

flooded area 

(103 km2) 

44 14 
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(R2= 0.96, p<0.0001, Fig.6, c) into the aquatic system, but not terrestrial NPP (R2= 0.01, 

p<0.05, Fig.6, a).  

We simulate a mean annual C export to the coast of 15.5±4 Tg C yr-1 (Fig. 5). In Figure 7, we 

compare simulated DOC concentrations at six locations (Fig. 1) along the Congo River and 

Bangui tributary, against the observations of Borges at al. (2015b). The simulated DOC 

concentrations represent the average values across the particular sampling period at each site 

detailed in Borges et al. (2015b). We show that the model can recreate the spatial variation in 

DOC concentration within the Congo basin relatively closely with an R2 of 0.82 and an RMSE 

of 19% (Fig. 7) 

For the present day (1981-2010) we estimate a mean annual net ecosystem production (NEP) 

of 275 ±137 Tg C yr-1 and a net biome production (NBP) of 107 ±133 Tg C yr-1 (Fig. 5). 

Interannually, both NEP and NBP exhibit a strong inverse correlation with temperature 

(detrended NEP R2=0.55, p<0.0001, detrended NBP R2=0.54, p<0.0001) and weak positive 

relationship with rainfall (detrended NEP R2=0.16, p<0.05, detrended NBP R2=0.14, p<0.05). 

Furthermore, we simulate a present day (1981-2010) living biomass of 41 ±0.8 Pg C and a total 

soil C stock of 109 ±1.1 Pg C. 
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Chapter 4 Figure 5: Simulated annual 

C budget (NBP) for the Congo basin 

for the present day (1981-2010), 

where NPP is terrestrial net primary 

productivity, TF is throughfall, SHR 

is soil heterotrophic respiration, 

FCO2 is aquatic CO2 evasion, LOAC 

is C leakage to the land-ocean aquatic 

continuum (FCO2 + 𝐋𝐄Aquatic), LUC is 

flux from Land-use change, and 

𝐋𝐄Aquatic is the export C flux to the 

coast.  Range represents the standard 

deviation (SD). 

Chapter 4 Figure 6:Present day (1981-2010) spatial distribution of a) terrestrial NPP, b) DOC 

leaching into the aquatic system, c) CO2 leaching into the aquatic system and d) aquatic CO2 

evasion. All at a resolution of 1° 
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4.3.3. Long-term temporal trends in carbon fluxes  

We find an increasing trend in aquatic CO2 evasion (Fig. 8 a) throughout the simulation period, 

rising slowly at first until the 1960s when the rate of increase accelerates. In total CO2 evasion 

rises by 79% from 186 Tg C yr-1 at the start of the simulation (1861-1890 mean) (Fig. 9) to 337 

Tg C yr-1 (2070-2099 mean, Fig. 9), while the trend until the present day (1981-2010 mean) 

represents an increase of 28 % (to 239 Tg C yr-1), though these trends are not uniform across 

the basin (Fig S1). The lateral flux of C to the coast (LEAquatic) follows a similar pattern (Fig. 8 

b), rising by 67% in total, from 12 Tg C yr-1 (Fig. 9) to 15.5 Tg C yr-1 for the present day, and 

finally to 20 Tg C yr-1 (2070-2099 mean, Fig. 9). This is greater than the equivalent increase in 

DOC concentration (24%, Fig. 8 b) due to the concurrent rise in rainfall (by 14%, Fig 8. h) and 

in turn discharge (by 29%, Fig. 8 h). Interestingly, the proportion of NPP lost to the LOAC also 

increases from approximately 3% to 5%. 

NPP and SHR also exhibit substantial increases of 35% and 26% respectively across the 

simulation period and similarly rise rapidly after 1960 (Fig. 8 c). NEP, NBP (Fig. 8 d) and 

 
Chapter 4 Figure 7: Observed (Borges et al., 2015a) versus simulated DOC concentrations at 

several sites along the Congo and Bangui rivers. See Fig. S1 for locations. The simulated DOC 

concentrations represent the mean values across the particular sampling period at each site 

detailed in Borges et al. (2015a). 
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living biomass (Fig. 8 e) follow roughly the same trend as NPP but NEP and NBP slow down 

around 2030 and in the case of NBP, we actually simulate a decreasing trend over 

approximately the final 50 years. We also find that living biomass mass increases by a total of 

53% from 1861 to 2099. Total soil C also increases over the simulation but only by 3% from 

107 to 110 Pg C yr-1 (Fig. 8 e). The flux from land-use change (LUC) shows considerable 

decadal fluctuation increasing rapidly in the second half of the 20th century and decreasing in 

the mid-21st century before rising again towards the end of the simulation (Fig. 8 f). The harvest 

flux (Fig.8 f) rises throughout the simulation with the exception of a period during in the mid-

21st century in which it stalls for several decades. This is reflected in the change in land-use 

from 1861- 2099 (Fig. S2 Table S3) during which the natural forest and grassland PFTs 

marginally decrease while both C3 and C4 agricultural grassland PFTs increase.  
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 Chapter 4 Figure 8: Simulation results for various C fluxes and stocks from 1861-2099, 

using IPSL-CM5A-LR model outputs for RCP 6.0 (Frieler et al., 2017).  All panels except 

for atmospheric CO2, biomass and soil C correspond to 30-year running means of 

simulation outputs. This was done in order to suppress interannual variation, as we are 

interested in longer-term trends. 
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4.3.4. Drivers of simulated trends in carbon fluxes 

The dramatic increase in the concentration of atmospheric CO2 (Fig. 8 g) and subsequent 

fertilization effect on terrestrial NPP has the greatest overall impact on all of the fluxes across 

the simulation period (Fig. 10). It is responsible for the vast majority of the growth in NPP, 

SHR, aquatic CO2 evasion and flux of C to the coast (Fig. 10 a, b, c & d). The effect of LUC 

on these four fluxes is more or less neutral, while the impact of climate change is more varied. 

The aquatic fluxes (Fig. 10 c, d) respond positively to an increase in the increase of both rainfall 

(and in turn discharge, Fig. 8 h) and temperature (Fig. 8 g) starting around 1970. From around 

2020, the impact of climate change on the lateral flux of C to the coast (Fig 10 d) reverts to 

being effectively neutral, likely a response to a slowdown in the rise of rainfall and indeed a 

decrease in discharge (Fig 8 h), as well as perhaps the effect of temperature crossing a 

threshold. The response of the overall loss of terrestrial C to the LOAC (i.e. the ratio of 

LOAC/NPP, Fig. 10 e) is relatively similar to the response of the individual aquatic fluxes but 

crucially, climate change exerts a much greater impact, contributing substantially to an increase 

in the loss of terrestrial NPP to the LOAC in the 1960s, and again in the second half of the 21st 

century. These changes closely coincide with the pattern of rainfall and in particular with 

changes in discharge (Fig. 8 h). 

Overall temperature and rainfall increase by 18% and 14% respectively but in Fig. S2 one can 

see that this increase is non-uniform across the basin. Generally speaking, the greatest increase 

in temperature occurs in the south of the basin while it is the east that sees the largest rise in 

rainfall (Fig. S2). Land-use changes are similarly non-uniform (Fig. S2).   

The response of NBP and in NEP (Fig.10 f, g) to the anthropogenic drivers is more complex. 

The simulated decrease in NBP towards the end of the run is influenced by a variety of factors; 

LUC and climate begin to have a negative effect on NBP (contributing to a decrease in NBP) 

at a similar time while the positive impact (contributing to an increase in NBP) of atmospheric 
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CO2 begins to slow down and eventually level-off (Fig.10 g). LUC continues to have a positive 

effect on NEP (Fig.10 f) which prevents NEP from reducing in the same manner as NBP at the 

end of the simulation. 

 

Chapter 4 Figure 9: Simulated annual C budget (NBP) for the Congo basin for the left, the Year 

1861 and right, the Year 2099. Where NPP is terrestrial net primary productivity, TF is 

throughfall, SHR is soil heterotrophic respiration, FCO2 is aquatic CO2 evasion, LOAC is C 

leakage to the land-ocean aquatic continuum (FCO2 + 𝐋𝐄Aquatic), LUC is flux from Land-use 

change, and 𝐋𝐄Aquatic is the export C flux to the coast. Range represents the standard 

deviation (SD). 
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Chapter 4 Figure 10: Contribution of anthropogenic drivers; atmospheric CO2 concentration 

(CO2 atm), climate change (CC) and land use change (LUC) to changes in the various carbon 

fluxes along the Congo Basin, under IPSL-CM5A-LR model outputs for RCP 6.0 (Frieler et 

al., 2017). 
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4.4. Discussion 

Our estimate of present-day aquatic CO2 evasion from the river surface of the Congo basin (32 

Tg C yr-1) is the same as that estimated by Raymond et al. (2015) (also 32 Tg C yr-1), 

downscaled over the same basin area, but smaller than the 59.7 Tg C yr-1 calculated by 

Lauerwald et al. (2015) and far smaller than that of Borges et al. (2015a), 133-177 Tg C yr-1. 

As previously discussed, we simulate the spatial variation in DOC concentrations measured by 

Borges et al. (2015a,b, Fig. 7) relatively closely and moreover, our mean riverine gas exchange 

velocity k of 3.5 m d-1 is similar to the 2.9 m d-1 used by Borges et al. (2015a). It is therefore 

surprising that our estimate of riverine CO2 evasion is so different, and likely to be related to 

methodological differences. While they based their upscaling on a relatively large database of 

observations compared to previous estimates (Raymond et al., 2013; Lauerwald et al., 2015) 

they still relied on some assumptions. They explain their approach in Borges et al. (2015a) as 

follows “The F data were aggregated to derive one value per tributary and per river mainstem, 

before averaging for a given river system. The global F values were computed as averages 

weighted by waterbody surface area for each river catchment derived from the percentage of 

river/stream effective surface area per catchment given in ref.3.” F values refer to CO2 evasion, 

while global F values refers to that across the entire African continent and ref. 3 refers to 

Raymond et al. (2013). We interpret this as meaning that while they accounted for the relative 

contribution of the surface area of each major African river basin by weighting, they did not 

do the same for the contribution of individual tributaries within the Congo Basin. Therefore, 

one explanation for their higher estimate could be the over-representation of CO2 evasion 

smaller tributaries in the Congo. Another reason for the difference could be that the resolution 

of ORCHILEAK (1° for C fluxes) is not sufficient to fully capture the dynamics of the smallest 

streams of the Congo Basin which have been shown to have the highest DOC concentrations 

(Borges et al., 2015b). 
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 Note also that in our simulations, the evasion flux from rivers only contributes 15% of total 

aquatic CO2 evasion, and including the flux from wetlands, we produce a total of 235 Tg C yr-

1.   

Our simulated export of C to the coast of 15.5 Tg C yr-1 is identical to the TOC+DIC export 

estimated by Borges et al. (2015a) of 15.5 Tg C yr-1, which is perhaps unsurprising given that 

our validation against their data demonstrate that we simulate a similar spatial variation of DOC 

concentrations (Fig. 7 and Fig. 1 for locations). It is also relatively similar to the 19 Tg C yr-1 

(DOC + DIC) calculated by Valentini et al. (2014). Valentini et al. (2014) used the largely 

empirical based Global Nutrient Export from WaterSheds (NEWS) model framework and they 

point out that Africa was underrepresented in the training data used to develop the regression 

relationships which underpin the model, and thus this could explain the small disagreement.  

We simulate a mean present-day terrestrial NPP of approximately 1,500 g C m-2 yr-1 (Fig. 6), 

substantially larger than the MODIS derived value of around 1,000 g C m-2 yr-1 from Yin et al. 

(2017) across central Africa.  Though, our stock of the present-day living biomass of 41.1 Pg 

C is relatively close to the total Congo vegetation biomass of 49.3 Pg C estimated by 

Verhegghen et al. (2012) based on the analysis of MERIS satellite data. Moreover, our 

simulated Congo Basin soil C stock of 109 ±1.1 Pg C is consistent with the approximately 120-

130 Pg C across Africa between the latitudes 10°S to 10°N in the review of Williams et al. 

(2007), between which the Congo represents roughly 70% of the land area. (10°S to 10°N). 

Therefore, their estimate of soil C stocks across the Congo only would likely be marginally 

smaller than ours. It is also important to note that neither estimate of soil C stocks explicitly 

take into account the newly discovered peat store of 30 Pg C (Dargie et al., 2017) and therefore 

both are likely to represent conservative values. In addition, Williams et al. (2007) estimate the 

combined fluxes from conversion to agriculture and cultivation to be around 100 Tg C yr-1 in 
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tropical Africa (largely synonymous with the Cong Basin), which is relatively close to our 

present day estimate of harvesting + land-use change flux of 170 Tg C yr-1. 

There is sparse observed data available on the long-term trends of terrestrial C fluxes in the 

Congo.  Yin et al. (2017) used MODIS data to estimate NPP between 2001 and 2013 across 

central Africa. They found that NPP increased on average by 10 g C m-2 per year, while we 

simulate an average annual increase of 4 g C m-2 yr-1 over the same period across the Congo 

Basin. The two values are not directly comparable as they do not cover precisely the same 

geographic area but it is encouraging that our simulations exhibit a similar trend to remote 

sensing data. 

Our results of the historic trend in NEP (not including LUC and harvest fluxes) also generally 

concur with other modelling studies of tropical Africa (Fisher et al., 2013). Fisher et al. (2013) 

used nine different land surface models to show that the African tropical biome already 

represented a natural (i.e. no disturbance, but also neglecting LOAC fluxes) net uptake of 

around 50 Tg C yr-1 in 1901 and that this more than doubled by 2010. We find a similar trend 

though we simulate higher absolute NEP.  Indeed, one of the models used in Fisher was 

ORCHIDEE and using this model alone, they calculate a virtually identical estimate of 277 Tg 

C yr-1 for the present day, though this estimate neglects the transfer of C along the LOAC and 

would therefore be significantly reduced with their inclusion. Our results also generally concur 

with estimates based on the upscaling of biomass observations (Lewis et al., 2009). Lewis et 

al., up-scaled forest plot measurements to calculate that tropical African forests represented a 

net uptake of approximately 300 Tg C yr-1 between 1968 and 2007 and this is consistent with 

our NEP estimate 275 Tg C yr-1 over the same period.  

For the present day, we show that aquatic C fluxes, and in particular CO2 evasion, are important 

components of the Congo Basin C balance, larger than for example the combined fluxes from 
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LUC and harvesting, with around 4% of terrestrial NPP being lost to the aquatic system each 

year.  However, this value is only one third of that found in the Amazon, where around 12% of 

NPP is lost to the aquatic system each year (Hastie et al., accepted). There are a number of 

differences between the drivers in the two basins which could explain this. Mean annual rainfall 

is 44% greater in the Amazon, while mean annual discharge is 4 times higher. Moreover, 7.7% 

of the surface of the Amazon Basin is water compared to only 4.7% of the Congo. 

We find that these fluxes have undergone considerable perturbation since 1861 to the present 

day, with CO2 evasion and the export of C to the coast increasing by 28% and 29% respectively, 

largely because of rising atmospheric CO2 concentrations.  Moreover, under RCP 6.0 we 

predict that this perturbation will continue; over the entire simulation period (1861-2099), we 

estimate that aquatic CO2 evasion and the export of C to the coast will increase by 79% and 

67% respectively. Interestingly, this increase is considerably higher than 25% and 30% rise 

predicted for the Amazon basin (Lauerwald et al., in submission), over the same period and 

under the same scenario. This is largely due to the fact climate change is predicted to have a 

substantial negative impact on the aquatic C fluxes in the Amazon, something that we do not 

find for the Congo where rainfall is projected to substantially increase over the 21st century. In 

the Amazon, Lauerwald et al. (in submission) show that while there are decadal fluctuations in 

precipitation and discharge, total values across the basin remain unchanged in 2099 compared 

to 1861. However, changes in the spatial distribution of precipitation mean that the total water 

surface area actually decreases in the Amazon. Indeed, while we find an increase in the ratio 

of C exports to the LOAC/NPP from 3 to 5%, Lauerwald et al. (in submission) find a 

comparative decrease. The increase in the proportion of NPP lost to the aquatic system (Fig. 8, 

9), as well as in the concentration of DOC at Brazzaville (by 23%), could also have important 

secondary effects, not least the potential for greater DOC concentrations to lower pH levels 

(Laudon & Buffam, 2008). 
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Conversely, our simulated increase in DOC export to the coast up to the present day is smaller 

than findings recently published for the Mississippi River using the Dynamic Land Ecosystem 

Model (DLEM, Ren at al., 2016). In addition, the Mississippi study identified LUC including 

land management practices (such as fertilization and irrigation), followed by change in 

atmospheric CO2, as the biggest factors in the 40% increase in DOC export to the Gulf of 

Mexico (Ren et al., 2016). Another recent study (Tian et al., 2015), found an increase in DIC 

export from eastern North America to the Atlantic Ocean from 1901-2008 but no significant 

trend in DOC or POC. They demonstrated that climate change and increasing atmospheric CO2 

had a significant positive effect on long-term C export while land-use change had a substantial 

negative impact.  

It is important to note that we can have greater confidence in the historic trend (until 2005), as 

the future changes are reliant on the skill of Earth System model predictions and of course on 

the accuracy of the RCP 6.0 scenario. There are for example, large uncertainties associated 

with the future CO2 fertilization effect (Schimel et al., 2015) and the majority of land surface 

models, ORCHILEAK included in its current form, do not account for the effect of nutrient 

limitation on plant growth meaning that estimates of land C uptake may be too large (Goll et 

al., 2017). There are also considerable uncertainties associated with future climate projections 

in the Congo basin (Haensler et al., 2013). However, in most cases the future trends that we 

find are more or less continuations of the historic trends, which already represent substantial 

changes to the magnitude of many fluxes.   

Moreover, we do not account methane fluxes from Congo wetlands, estimated at 1.6 to 3.2 Tg 

(CH4) per year (Tathy et al., 1992), and instead assume that all C is evaded in the form of CO2. 

Another limitation is the lack of accounting for bespoke peatland dynamics in the 

ORCHILEAK model. ORCHILEAK is able to represent the general reduction in C 

decomposition in water-logged soils and indeed Hastie et al. (accepted) demonstrated that 
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increasing the maximum floodplain extent in the Amazon Basin led to an increase in NEP 

despite fueling aquatic CO2 evasion because of the effect of reducing soil heterotrophic 

respiration.  Moreover, ORCHILEAK uses a “poor soils” forcing file (Fig. S3 a) based on the 

Harmonized World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009), which prescribes 

reduced decomposition rates in low pH and nutrient soils such as Podzols and Arenosols. The 

effect of the “poor soils” forcing can clearly be seen in the spatial distribution of the soil C 

stock in Fig. S3, b where the highest C storage coincides with the highest proportion of poor 

soils. Interestingly, this does not include the Cuvette Centrale wetlands (Fig. 1), an area which 

was recently identified as containing the world’s largest intact tropical peatland and a stock of 

around 30 Pg C (Dargie at al., 2017). A relatively simple potential improvement that could be 

made to ORCHILEAK would be the development of a new tailored “poor soils” forcing file 

for the Congo Basin, perhaps informed by the Soil Grids database (Hengl et al., 2014), to better 

represent the Cuvette Centrale. This could in turn, be validated and/or calibrated against the 

observations of Dargie et al. (2017). A more long-term aim could be the integration/ coupling 

of the ORCHIDEE-PEAT module with ORCHILEAK. ORCHIDEE- PEAT (Qiu et al., in 

review) represents peat as an independent sub-grid hydrological soil unit in which peatland 

soils are characterized by peat-specific hydrological properties and multi-layered transport of 

C and water. Thus far, it has only been applied to northern peatlands, and calibrating it to 

tropical peatlands, along with integrating it within ORCHILEAK would require considerable 

further model development, but would certainly be a valuable longer-term aspiration. This 

could also be applied across the tropical region and would allow us to comprehensively explore 

the implications of climate change and land-use change for tropical peatlands. 
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4.5. Supporting Information 

 

 

Chapter 4 Table S 2: Pearson correlation coefficient (r) between detrended carbon 

fluxes and detrended climate variables (NCC climate data) 

  SHR Aquatic 

CO2 

evasion 

Lateral C NEP Rain Temp. MEI 

NPP -0.48 0.68 0.72 0.90 0.64 -0.57 -0.09 

SHR 
 

-0.41 -0.48 -0.71 -0.32 0.76 0.04 

Aquatic CO2 

evasion 

  
0.92 0.41 0.87 -0.30 -0.21 

Lateral C 
   

0.52 0.81 -0.38 -0.15 

NEP 
    

0.40 -0.74 -0.01 

Rain 
     

-0.31 -0.26 

Temp.       0.03 

 

Chapter 4 Table S 1: Performance statistics for modelled versus observed 

seasonality of discharge on the Congo at Brazzaville 

Climate forcing RSME NSE R2 Mean monthly discharge (m3 

s-1) 

ISIMIP 29% 0.20 0.23 38,944 

Princeton GPCC 40% -0.25 0.20 49,784 

 

GSWP3 46% -4.13 0.04 24,880 

 

CRUNCEP 65% -15.94 0.01 16,394 

 

Observed 

(HYBAM) 

   40,080 
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Chapter 4 Figure S 1:Change (Δ, 2099 minus 1861) in the spatial distribution of a) terrestrial 

NPP, b) DOC leaching into the aquatic system, c) CO2 leaching into the aquatic system and d) 

aquatic CO2 evasion. All at a resolution of 1° 
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Chapter 4 Figure S 2: Change (Δ, 2099 minus 1861) in the spatial distribution of the principal 

climate and land-use drivers across the Congo Basin; a) mean annual temperature in °C, b) 

mean annual rainfall in mm yr-1, c)-h) mean annual maximum vegetated fraction for PFTs 2,3, 

10,11,12 and 13. All at a resolution of 1°. 
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Chapter 4 Table S 3: Past (1861-1890), present-day (1981-2010) and future (2070-

2099) mean values for important climate and land-use drivers across the Congo Basin 

Period Temp. Rain. PFT2 PFT3 PFT10 PFT11 PFT12 PFT13 

1861-

1890 

24.0 1451 0.263 0.375 0.154 0.254 0.015 0.014 

1981-

2010 

25.2 1526 0.255 0.359 0.154 0.255 0.038 0.030 

2070-

2099 

28.2 1654 0.258 0.362 0.147 0.245 0.039 0.037 

 

 

  

Chapter 4 Figure S 3: a) The “poor soils” forcing file, which prescribes the spatial distribution of 

low pH and low nutrient level soils such as Podzols, Arenosols, or soils located in black-water 

swamps (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009), where decomposition rates are reduced. b) 

spatial distribution of simulated total carbon stored in soils for the present day (1981-2020). 
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5. Conclusions and outlook 

5.1. Major conclusions, outputs and implications  

Previous research has shown a close relationship between the terrestrial and aquatic carbon (C) 

cycle, namely that part of the C fixed via terrestrial NPP that is exported to the aquatic system, 

driven largely by the hydrological cycle (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 

2009; Regnier et al., 2013). In turn, it has been demonstrated that the land-ocean aquatic 

continuum (LOAC) is an active component of the global C cycle, in which C can not only be 

transported laterally as dissolved organic carbon (DOC), particulate organic carbon (POC) and 

dissolved CO2 but also mineralized and evaded back to the atmosphere as CO2, or buried in 

lakes and floodplains (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009; Regnier et al., 

2013).  A number of hotspot areas of aquatic CO2 evasion and TOC export to the coast have 

previously been identified (Meybeck et al., 2006; Raymond et al., 2013; Lauerwald et al., 2015) 

but there are considerable gaps in our knowledge, particularly associated with understanding 

and accounting for the temporal and spatial variation of aquatic C fluxes at regional to global 

scales, which we know from local scale studies, to be substantial. The limits of our current 

understanding are reflected in the large uncertainty bands associated with global estimates of 

these fluxes (Raymond et al., 2013; Lauerwald et al., 2015; Mendonça et al., 2017) and in the 

fact that the terrestrial C cycle remains the sink/source with the largest uncertainty in the most 

recent Global Carbon Budget (Le Quéré at al., 2018b). 

In this thesis, three particularly important regional hotspots of LOAC activity were identified, 

where significant gaps in our understanding remain; the boreal region, the Amazon Basin and 

the Congo Basin. After formulating research questions for each, both empirical and process-

based modelling approaches were applied to explore the spatial and temporal dynamics of 

aquatic C cycling and connectivity with the terrestrial C cycle. In doing so, this thesis provides 
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new insights into the interaction between the terrestrial and aquatic C cycles and their 

perturbation across interannual to centennial timescales. 

For the boreal region (published in Hastie et al., 2018), an empirical model at the 0.5° grid 

scale was developed which explains 56% of the variation in the partial pressure of CO2 (pCO2) 

of boreal lakes using just three drivers; terrestrial net primary productivity (NPP, positive 

relationship), lake area (negative relationship) and precipitation (negative relationship), 

confirming the close connection between the terrestrial and aquatic C cycle in the boreal region. 

Not only is terrestrial NPP an important driver of aquatic pCO2 but the smaller the lake area, 

the greater the pCO2 because of the higher circumference to volume ratio and the thus increased 

impact of allochthonous C inputs and net-heterotrophy.  Using this approach, the first high 

resolution maps of boreal lake pCO2 and CO2 evasion were created, providing a new estimate 

for total evasion from boreal lakes of 189 (74–347) Tg C yr-1, which is more than double the 

previous best estimate (Raymond et al., 2013). Perhaps most importantly, our estimate is better 

constrained than the previous global estimate of Raymond et al. (2013) and gas exchanged 

velocity k is identified as the greatest source of uncertainty in the new estimate of boreal lake 

CO2 evasion.  Our new estimate could therefore be integrated into the global C budget of the 

LOAC and in turn the overall land C budget. 

The boreal region is predicted to undergo substantial climate change over the 21st century and 

to be highly sensitive to this change (Gauthier et al., 2015; Intergovernmental Panel on Climate 

Change (IPCC)., 2013; Koven, 2013; Price et al., 2011). As such, the regression model was 

also used along with future projections of terrestrial NPP and precipitation, to predict future 

lake CO2 evasion under Representative Concentration Pathway (RCP) 2.6 and RCP 8.5, and it 

was found that even under the most conservative pathway (RCP 2.6) CO2 evasion from boreal 

lakes may increase 38% by 2100. This increase is more or less proportionate to the growth in 
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terrestrial NPP and thus the proportion of NPP lost to the aquatic system remains relatively 

constant.  

For the Amazon Basin (accepted for publication in Global Change Biology), the ORCHILEAK 

land surface model (Lauerwald et al., 2017) driven by a newly developed wetland forcing file, 

was applied to explore the interannual variation of the aquatic C fluxes and their impact on the 

overall net ecosystem productivity of the Amazon. Based on this new wetland forcing and two 

climate forcing datasets, it was demonstrated that an average of 11.6% of NPP is lost to the 

river-floodplain system each year. It was also shown that this flux is highly variable at the 

interannual timescale; greatest during wet years and lowest during droughts.  However, at the 

same time overall net ecosystem productivity (NEP) and C sequestration is highest during wet 

years, partly due to reduced decomposition rates in water-logged floodplain soils. It is years 

with the lowest discharge and floodplain inundation, often associated with El Nino events, that 

have the lowest NEP and the highest total (terrestrial plus aquatic) CO2 emissions back to 

atmosphere. Furthermore, it was found that aquatic C fluxes display greater variation than 

terrestrial C fluxes, and that this variation significantly dampens the interannual variability in 

NEP of the Amazon basin. Previous research had already shown substantial decreases in 

terrestrial net primary productivity (NPP), and in turn C uptake from the atmosphere at 

interannual timescales as a result of climatic extremes and the ENSO cycle, the 2005 and 2010 

droughts for example (Zhao & Running, 2010; Potter et al, 2011; Doughty et al., 2015 and 

Feldpausch et al., 2016). However, these studies did account for LOAC fluxes and the results 

of this thesis suggest that the interannual variation in aquatic C fluxes may act to moderate, at 

least partially, for the concurrent variation in the terrestrial C cycle. If this dynamic between 

the terrestrial and aquatic C cycle holds for the entire tropical region, it could have even greater 

implications for the land C cycle and its interannual variation. 
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Finally, ORCHILEAK was applied to the Congo Basin to investigate the evolution of the 

integrated aquatic and terrestrial C fluxes from 1861 to the present day, and in turn to 2099 

under RCP 6.0. It was shown that terrestrial and aquatic fluxes increase substantially over time, 

both over the historical period and into the future, and that these increases are largely driven 

by atmospheric CO2. Interestingly the proportion of terrestrial NPP lost to the LOAC also rises 

from 3% in 1861 to 5% in 2099 and this trend is driven not only by atmospheric CO2 but also 

by climate change, namely an increase in precipitation, which in turn drives an increase in 

discharge.  This is in contrast to the boreal region where we predict that the proportion of NPP 

exported to the LOAC will remain relatively constant, and to the Amazon, where Lauerwald et 

al. (in submission), actually show a decrease in the proportion of terrestrial NPP exported to 

the aquatic system over time due to differences in projected climate change. While there are 

decadal fluctuations in precipitation and discharge in the Amazon, total values across the basin 

remain basically unchanged in 2099 compared to 1861 (Lauerwald et al., in submission).  

In figure 1, the present-day C budgets for the three different regions are shown and there is a 

number of interesting comparisons to be made. Firstly, the percentage of NPP transferred to 

the LOAC is variable. It was estimated that 3.8%, 11.6% and 4.4% of terrestrial NPP is 

transported to the aquatic system each year for the boreal region, the Amazon basin and the 

Congo basin, respectively. The values for the Congo and boreal regions are comparable to the 

global mean of 4.7% estimated by Regnier et al. (2013), though a recent review of Drake et al. 

(2018) postulated that the global mean could be as high as 9%, much closer to our estimate for 

the Amazon Basin. Figure 2 displays the spatial variation of CO2 evasion rate (g C yr-1 m-2 grid 

surface area) for the three different regions at a resolution of 0.5°. The boreal region only shows 

CO2 evasion from lakes, though as outlined in chapter 2 (and indeed figure 1 of this section) 

CO2 evasion from lakes dominates the boreal LOAC budget. The Amazon and Congo regions 

show CO2 evasion from rivers and wetlands. The Amazon Basin exhibits by far the highest 
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areal CO2 fluxes, followed by the Congo Basin, though the latter is heavily dominated by one 

region; the Cuvette Centrale wetlands. 

 

a) 

b) c) 

Chapter 5 Figure 1: Integrated mean annual terrestrial and aquatic carbon budgets for the 

present day for  a) the boreal region, b) the Amazon Basin and Congo Basin, where NBP is net 

biome production, NPP is terrestrial net primary productivity, TF is throughfall, SHR is soil 

heterotrophic respiration, FCO2 is aquatic CO2 evasion, LOAC is carbon leakage to the land-

ocean aquatic continuum (FCO2 + 𝐋𝐄Aquatic ), and 𝐋𝐄Aquatic is the export carbon flux to the coast. 

See chapter 2 for full details of the additional references used to derive the boreal region budget. 
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Perhaps the most surprising difference between the regions is the dramatically higher rate of 

NPP export in the Amazon compared to the Congo, but there are a number of differences in 

the drivers which can explain this. Mean annual rainfall is 44% greater in the Amazon, while 

mean annual discharge is 4 times higher. Moreover, 7.7% of the surface of the Amazon Basin 

is water compared to only 4.7% in the Congo. As a result, the Amazon also has higher simulated 

mean pCO2 values than the Congo, in line with observations from field studies (Borges et al., 

2015b). As previously discussed, our results suggest that the difference in the connectivity of 

the terrestrial and aquatic environment between the two tropical regions has reduced slightly 

and will continue to do so over time, as the percentage of NPP lost to the aquatic system is 

increasing in the Congo basin. In the boreal region, 6.9% of the surface is covered by water, 

though this is heavily dominated by lakes with substantially lower pCO2 values, as well as far 

lower gas exchange velocities due to lower turbulence than rivers. Ultimately, lakes have 

considerably longer residence times than rivers, which accounts for much of these differences.   

Another interesting difference is the ratio of CO2 evasion to the C export flux to the ocean 

(combined flux of DOC and DIC). For the boreal region CO2 evasion is only 5 times the flux 

to the coast, while the ratio for the Amazon and Congo is similar, 16 times, and 15 times 

respectively. This concurs with previous studies showing generally higher DOC concentrations 

in boreal (Campeau and Giorgio, 2014; Hutchins et al., 2019) rivers compared to the Amazon 

(Rasera et al., 2013) and Congo (Borges et al., 2015a). For the global scale, Regnier et al. (2013) 

put the ratio of CO2 evasion to C export to the coast at approximately 2:1, while Drake at al. 

(2018), estimate that it could be as high as 5:1. However, it is important to note that neither of 

these studies account for C evaded directly from inundated floodplains or wetlands as CO2 

(Regnier et al,. 2013 did include CH4 evasion from wetlands), which accounts for the majority 

of total CO2 evasion in the Amazon and Congo basins in this thesis. 
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Chapter 5 Figure 2: Estimated present-day spatial variation (0.5°) in CO2 evasion from a)-

boreal lakes, b) the rivers and wetlands of the Amazon Basin and c) the rivers and wetlands of 

the Congo Basin. 

  

5.1.1. Integrating the LOAC into the Global Carbon Atlas 

Arguably the most novel aspect of our results lies in quantifying the spatial variation in aquatic 

C fluxes both between biomes and within biomes (Fig. 2), as well as showing that these fluxes 

are highly temporally variable, changing across interannual and centennial timescales with 

climate and atmospheric CO2, and perhaps most importantly that the proportion of NPP lost to 

the LOAC is in turn highly variable. Though the results of this thesis have also been directly 

applied to produce an LOAC C budget for the Global Carbon Atlas (Fig. 3). The Global Carbon 

Atlas is an outreach initiative of the Global Carbon Project, namely an online “platform to 

explore and visualize the most up-to-date data on carbon fluxes resulting from human activities 

and natural processes”. Figure 3 shows the global C budget for the LOAC after incorporating 

the latest research, including the results from the first two chapters of this thesis.  We estimate 

that a total of 2.9 Pg C yr-1 is exported from the terrestrial environment to the LOAC, equivalent 

to the entire land sink estimated in the latest Global Carbon Budget (Le Quéré et al., 2018b) 

and greater than the ocean sink. After subtracting export to the LOAC, we calculate that only 

a) 

b) c) 
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1.7 Pg C yr-1 is stored on land, with a further 0.5 Pg C yr-1 being stored in the LOAC producing 

a total storage of 2.2 Pg C yr-1 (Fig. 3). Note that this budget does not incorporate our results 

for the Congo. These would have a negligible impact on the global CO2 evasion estimate for 

rivers but would increase evasion from floodplains by approximately 0.2 Pg C yr-1. However, 

it can be debated whether wetlands should be considered as terrestrial or aquatic. Moreover, 

some would even argue that at the global scale the land C cycle can effectively be considered 

as nearly closed, in other words it is unimportant whether CO2 is emitted from the terrestrial 

environment or whether it is first exported to the LOAC before being emitted as CO2 evasion. 

This remains an open question that will only be tackled by concurrently running process-based 

models such as ORCHILEAK with and without the incorporation of LOAC fluxes, which a 

new publication should help to answer (Lauerwald., in submission).  Nevertheless, it is 

undeniably important from a perspective of understanding the land C cycle, in turn how it has 

been historically perturbed, and crucially how climate change, land-use change and 

hydrological management will affect these C fluxes in the future. Ultimately it is our 

understanding of these processes which will help to inform governmental decision making. 

Moreover, we estimate that almost 1 Pg C yr-1 is transported from land to the coast each year 

(Fig. 3).  
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Chapter 5 Figure 3: The Global Carbon Budget for the Land to Ocean Aquatic Continuum for 

the present day (C-CASCADES, 2019). Values are based on the following literature sources: 

Regnier et al., 2013; Bauer et al., 2013; Laruelle et al., 2013; Laruelle et al 2014 ; Lauerwald et 

al., 2015; Laruelle et al 2017 ; Maavara et al., 2017; Hastie et al., 2018; Hastie et al., accepted; 

Roobaert et al., in preparation.  

5.2. The advantages and limitations of empirical based approaches versus 

ORCHILEAK 

In this thesis two very different methodologies were used; an empirical approach was applied 

to boreal lakes in chapter 2 while the process based ORCHILEAK model was used in the two 

tropical basins, and both methodologies have their strengths and weaknesses. The empirical 

approach has the advantage of being driven directly by all of the available “observations” of 

pCO2 and allowed a relatively objective assessment of the uncertainty using Monte Carlo 

simulations (comprising 10,000 runs) to quantify the uncertainty associated with the 

calculation of pCO2 based on the b-estimates of the three independent variables from the 

multilinear regression. This was followed by further Monte Carlo simulations (again 10,000 

runs) to estimate the uncertainty associated with the calculation of CO2 evasion, which allowed 

us to conclude that gas exchange velocity k is the largest source of uncertainty in the estimate 

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13902#gcb13902-bib-0037
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of total CO2 evasion from boreal lakes (Hastie et al., 2018). Indeed, our estimate of the mean 

annual CO2 evasion for the present day of 189 Tg C yr-1 comes with a considerable uncertainty 

range of between 74 Tg C yr-1 and 347 Tg C yr-1 (5th and 95th percentiles).  Provided that the 

statistical model used for the upscaling is sufficiently powerful (which was the case here), data-

driven approaches are arguably the best methods for estimating the regional to global scale 

spatial variation of aquatic CO2 evasion for the present day, as well as a range of uncertainty. 

However, there are considerable limitations associated with empirical models. 

As previously discussed, the vast majority of pCO2 “observations” are indirectly calculated 

from alkalinity, pH, and water temperature, a method which is highly error prone in low-pH 

and low-alkalinity waters (Abril et al., 2015) and can lead to an overestimation of pCO2 (Wallin 

et al., 2014), though this problem was at least partly addressed by discarding any calculations 

of pCO2 undertaken at a pH ≤ 5.4.  It was also found that the calculation of CO2 evasion is 

highly dependent on the estimate of gas exchange velocity k, for which numerous 

parametrizations exist and indeed this was the largest source of uncertainty. Moreover, while 

we applied our empirical model to predict future CO2 evasion under two RCP scenarios, these 

estimates were ultimately driven and therefore reliant on outputs of process-based earth system 

models (future projections of terrestrial NPP and precipitation). It is also important to reiterate 

the fact that this approach relied on the considerable assumption that the relationship between 

the environmental drivers observed for the present day holds into the future. 

A land surface model such as ORCHILEAK allows for a wider range of research questions to 

be investigated, particularly those associated with temporal variation and crucially it allows 

integration of the aquatic C cycle within the terrestrial. In chapter 3 one of the major findings 

was that the interannual variation in aquatic C fluxes moderates the corresponding variation in 

terrestrial C fluxes at the regional scale of the Amazon Basin, something that would be much 

more difficult, if not impossible, to investigate using only observations or empirical 
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approaches. With models such as ORCHILEAK, one can also apply different scenarios of 

atmospheric CO2, climate and land-use change amongst other boundary conditions, to 

investigate how the C cycle will react to different perturbations. Indeed, in this thesis 

ORCHILEAK was applied to the Congo Basin in chapter 4 for this very purpose. Interestingly, 

in the ORCHILEAK model, CO2 evasion is relatively insensitive to changes in the gas 

exchange velocity k (Lauerwald et al., 2017), in contrast to the empirical approach where 

evasion changes linearly with k. Rather, CO2 evasion in ORCHILEAK is sensitive to CO2 

inputs and in-stream decomposition.  However, process-based models are also open to criticism 

for excluding important processes, an issue discussed in greater detail in the proceeding 

chapters. Moreover, models like ORCHILEAK are dependent on observed data of sufficient 

quality and spatio-temporal resolution to calibrate and validate their outputs. In summary, 

despite their respective limitations empirical, process-based models and field studies all have 

to be employed in our attempts to better understand the global C cycle. 

5.3. Current methodological limitations and future research avenues  

Looking at the uncertainty ranges in our regional C budgets of Figure 1, it is clear that LOAC 

research is a field in which considerable data and methodological limitations remain. The 

following section discusses the most pressing limitations and uncertainties associated with 

ORCHILEAK and the current database of observations, as well as some proposals to address 

some of these limitations. 

5.3.1. Application of ORCHILEAK to other regions 

In terms of modelling, in the immediate future ORCHILEAK could be applied across the entire 

tropical region in its current form. The Gumbricht dataset (Gumbricht et al., 2017) utilized in 

both Amazon and Congo studies spans the entire tropical region and therefore it would be a 

relatively simple task to create pan-tropical wetland forcing files. Moreover, a recent study 

(Tootchi et al., 2019) developed a high resolution (500m) composite wetland database at the 
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global scale, which accounts for both groundwater/ rainfed wetlands, as well as floodplains. 

This could potentially be used to develop wetland forcing files for ORCHILEAK both at the 

global scale, and for non-tropical regional studies. 

Perhaps more difficult would be finding a model calibration which provides sufficiently good 

performance (against observed data) across the tropics. In order to improve the hydrological 

performance of ORCHILEAK in the Congo, the model constants which dictate residence time 

of the water reservoirs were substantially reduced, which suggests that finding a universal 

calibration might not be so straightforward. However, more fundamental to the poorer 

performance of the Congo hydrological performance against observations, was the climate 

forcing datasets, all of which tested in this study overestimate the seasonality of the Congo 

hydrological cycle, irrespective of calibration. As such, it may be worthwhile trying to improve 

one of the present-day climate forcing datasets such as Princeton GPCC (which already 

incorporates some observations), by correcting them with the latest observed data, something 

which has previously been done for the Amazon Basin (Guimberteau et al., 2012) for NCC 

(Ngo-Duc et al., 2005). Alternatively, there may already be climate forcing datasets with 

sufficiently good performance across the tropical region that were not tested in this analysis. 

Applying ORCHILEAK to the entire tropical region would allow us to test whether the 

moderating effect of the aquatic C fluxes on the interannual variation of net ecosystem 

production (NEP), that was found in the Amazon (chapter 3), applies more widely. The results 

of a potential pan-tropics study could have substantial implications for understanding and 

quantifying the overall land C budget for the tropical region. Another relatively simple 

improvement, discussed in the previous chapter, would be the development and validation of 

an improved “poor soils” forcing file, which prescribes reduced decomposition rates in low pH 

and nutrient soils such as Podzols and Arenosols based on the Harmonized World Soil 

Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009). The new version could be based on the 
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Soil Grids database (Hengl et al., 2014), which appears to be able to better represent tropical 

peatland soils. A modified version of ORCHILEAK has also been recently applied to Arctic 

rivers, while it is currently in the process of being calibrated to large European rivers. 

5.3.2. Model Improvements  

In terms of land surface models, ORCHILEAK is at the cutting edge of integrating the LOAC 

into the terrestrial C cycle but still it suffers from considerable limitations. As discussed in the 

previous chapter, ORHCILEAK fails to account for tropical peatlands.  A peatland sink of 30 

Pg C (Dargie at al., 2017) was recently discovered in the Congo Basin while a smaller but still 

considerable peatland sink of 3 Pg C (Draper et al., 2014) was found in the Amazon. This is an 

emerging research field and thus it is likely that further tropical peatlands will be discovered 

over the coming years. As such it is becoming more and more important to incorporate the 

specific dynamics of tropical peatlands into land surface models, especially as recent research 

suggests that tropical peatlands are less resilient to drainage than northern peatlands (Evans et 

al., 2014). Recent research on South-East Asian catchments has also shown that a large 

proportion the C exported from tropical peatlands to estuaries is respired before reaching the 

coast (Müller et al., 2016). 

ORCHIDEE- PEAT (Qiu et al., accepted, 2019, Appendix 8.2) is a new model branch of 

ORCHIDEE and represents peat as an independent sub-grid hydrological soil unit in which 

peatland soils are characterized by peat-specific hydrological properties and multi-layered 

transport of C and water. It has thus far only been applied to northern latitudes but again could 

be merged with ORCHILEAK and potentially recalibrated to represent tropical peatlands. A 

recent study applied the CLIMBER-LPJ model, a version of the LPJ-DGVM to simulate the 

long-term persistence of peatlands globally (including tropical) and found that tropical 

peatlands are more stable than northern peatlands over millennial timescales (Treat et al., 

2019). However, this study only incorporated very few tropical peatland cores in its calibration 
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and moreover uses a grassland PFT as the sole land-cover type for peatlands, an approach 

which does not reflect the reality of most tropical peatlands where many are overlain by forest 

PFTs such as palm and pole forest (Draper et al., 2014).  

Other potential medium-long term aspirations could be the implementation of lakes and 

reservoirs into ORCHILEAK, the representation of methanogenesis and methane (CH4) 

evasion, the effects of waterlogged soils on terrestrial NPP, the explicit representation of 

aquatic plants, and the representation of weathering derived DIC fluxes, as well as erosion 

derived POC fluxes. Wetlands are the world’s largest natural source of methane comprising 

one-third of total emissions and this flux is projected to increase with climate change (Zhang 

et al., 2017). Moreover, the world is undergoing a second boom in dam construction and this 

time it will be concentrated in the tropical region; in the Amazon basin alone 140 dams under 

construction or already in operation, and a further 288 planned (Latrubesse et al., 2017). These 

dams will have direct impacts on the C retention efficiency within the LOAC (Maavara et al., 

2017) as well as implications for hydrology and ecology, and this is therefore another important 

area for research efforts to be focused on. In its current form, ORCHILEAK does not simulate 

the lateral transport of POC, though it does account for the decomposition of submerged litter 

as a substantial source of DOC and dissolved CO2 to the water column; in other words, POC 

from submerged litter is assumed to decompose locally in ORCHILEAK. Increasing soil 

erosion due to land-use change represents another substantial perturbation of the C fluxes to 

the LOAC (Naipal et al. 2018). Once again, another version of ORCHIDEE developed to 

represent POC erosion fluxes (Naipal et al., 2018) could potentially be merged with 

ORCHILEAK to address this limitation. Moreover, another aspect of the C cycle which is 

currently missing in earth system models such as ORCHIDEE is primary production in 

freshwaters. Indeed, there is no PFT in ORCHIDEE to represent aquatic plants such as 



Conclusions and outlook 

185 

 

macrophytes. Globally, freshwater photosynthetic fixation could be as high as 0.3 Pg C yr-1 

(Regnier et al., 2013) so this is a significant current limitation which needs to be addressed. 

Finally, ORCHILEAK does not account for the effect of nutrient limitation on the C cycle. A 

2012 study using the JSBACH model found that globally, the implementation of the Nitrogen 

(N) and Phosphorus (P) and coupling with the C cycle, reduced estimates of the land C uptake 

from 1810-2100 by 25% (Goll et al., 2012).  In the tropics, accounting for the P cycle had the 

greater effect, as tropical biomes tend to be dominated by old, highly weathered soils with low 

P availability. The study showed that for the present day, accounting for P limitation reduced 

the NPP of tropical plant functional types (PFTs) by 10-20%, though the study also predicted 

that even P limitation would become less important in the tropics by 2100 (Goll et al., 2012). 

This is due to increasing temperatures eventually lowering NPP and in turn nutrient demands.  

A new version of ORCHIDEE, which represents both the P and N cycle was recently developed 

(Goll et al., 2017) and therefore integrating the transfer of N and P along the LOAC into 

ORCHILEAK could be possible in the relatively near future, though merging the two model 

branches and implementing the aquatic fluxes of N and P would require considerable time and 

resources. Nevertheless, the N and P cycles also require that we integrate the terrestrial, aquatic 

and export fluxes in the same boundless way as has been represented for C in ORCHILEAK, 

i.e. not restricted to their impact on the C cycle. This approach would also allow us to 

investigate the long-term perturbations of the N and P cycles right along the LOAC. 

5.3.3. Data for calibration and validation 

In terms of observations, there are large geographic regions in which little or no data is 

available such as large parts of Siberia, as discussed in chapter 2. Moreover, even in areas with 

extensive datasets, observations are rarely made at sufficiently frequent intervals to capture the 

full spectrum of the temporal variation in pCO2 which has been shown to fluctuate significantly 

even over the course of a day. For example, a recent study (Xu et al., 2019) conducted fieldwork 
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in a subtropical eutrophic lake and found that mean pCO2 was more than 4 times higher at 

07:00 (1113 µatm) than at 17:00 (205 µatm) meaning that the same lake changed from a 

substantial C source to sink over the course of a day. pCO2 has also been found to vary at 

extremely high spatial resolutions. A 2018 study on an oligotrophic boreal lake, found that 

CO2 evasion was highest 5m from the lake shore and 12 times higher than values at 15m from 

the shore (Spafford & Risk, 2018). Moreover, they found that each distance from the shore (5, 

10 and 15m) had its own distinct temporal variability in CO2 exchange with the atmosphere. 

Studies such as these further highlight the incredible challenge that we face in accounting for 

spatial and temporal variation at larger scales and resolutions. Additionally, the vast majority 

of pCO2 data is indirectly calculated from pH, alkalinity and water temperature and CO2 fluxes 

are similarly rarely measured directly, meaning that these are considerable sources of error 

(Abril et al., 2015). As previously noted, the estimation of gas exchange velocity k is a large 

source of uncertainty and hence more direct observations of GHG fluxes would be invaluable 

for both training empirical models with, as well as for the calibration and validation of process-

based models. 

5.4. Closing remarks 

With so many current methodological limitations and gaps in our understanding, one of the 

greatest challenges lies in the prioritization of future research. One could improve models 

indefinitely, incorporating more and more processes at higher and higher temporal and spatial 

resolutions until there is theoretically little difference between the modelled and the real world. 

However, how can we know that our results are realistic unless we have sufficient observed 

data with which to compare them to? Moreover, how can we be sure that we are not missing 

some crucial unknown biogeochemical process if we do not continue to undertake fundamental 

research in the field?  Model developments have to be complemented by data collection in the 

field, as well as remote sensing; indeed, this thesis used field data to both drive an empirical 
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model and to calibrate/ validate a process-based model, while remote sensing data was used to 

create novel forcing files. Furthermore, as previously discussed, the C cycle varies at an 

extremely high temporal and spatial resolution and therefore it is likely that modelling and 

remote sensing will always be reliant upon field data to confine and test the limits of their skill 

and power.  Current land surface models such as ORCHILEAK are simply not capable of 

simulating some of the extremely high spatio-temporal variation observed in field studies and 

in these cases, we are even more reliant upon field investigations. 

Finding the balance between putting resources into further model development versus remote 

sensing versus fieldwork requires detailed discussion and collaboration. One such project that 

aims to achieve this kind of collaboration, and in which I am involved, is the Readiness of 

ICOS for Necessities of Integrated Global Observations (RINGO) project, led by the Integrated 

Carbon Observation System (ICOS) organization. RINGO aims to expand the current network 

of 130 greenhouse gas measurement stations in Europe whilst at the same time improving the 

quality of data and access to potential users. A major part of this project is to identify 

geographic gaps in the current network of stations. This is being achieved through a series of 

workshops involving many countries and crucially, biogeochemical researchers operating at 

various different scales, from local observational studies to global models. This allows for a 

unique transfer of knowledge that would be impossible if it were only modellers or similarly 

only observational scientists. If we are to address the significant remaining challenges in our 

understanding of the C cycle, these collaborations are nothing short of essential. 
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8. Appendices 

8.1. Methods section of Lauerwald et al. (2017) 

8.1.1.  Model developments 

ORCHILEAK is based on the recent model branch ORCHIDEE-SOM (Camino Serrano, 2015) 

which relies on a novel module representing the vertical distribution of soil organic carbon 

(SOC) and associated transport and reaction processes. These processes include the production, 

consumption, adsorption/desorption and transport of DOC within the soil column as well as 

DOC exports from the soil column by drainage and surface runoff. In this study, the module is 

upgraded to represent DOC cycling in tropical rain forests, in particular by adding fluxes of 

DOC from the atmosphere and canopy with throughfall and by distinguishing soil carbon 

processes on non-flooded and flooded soils, including the direct input of DOC and CO2 from 

the decomposition of submerged litter and soil carbon to the water column. The trunk-version 

of ORCHIDEE, as well as the branch ORCHIDEE-SOM, includes a river routing module 

(Guimberteau et al., 2012; Polcher, 2003) that simulates the lateral transfer of water from one 

grid to another, representing the river channel as well as connected wetlands. Here, this routing 

module has been upgraded with a tracer transport equation to simulate the fluxes of DOC and 

CO2 along the fluvial network, distinguishing two pools of DOC, labile and refractory DOC. 

In addition, the representation of the floodplain dynamics is improved in this study to better 

reproduce the seasonal flooding in the Amazon basin, which is a major controlling factor of 

the water (Guimberteau et al., 2012) and carbon flow dynamics along the river network (Richey 

et al., 1990). ORCHIDEE can be run at different spatial and temporal resolutions. Here, in line 

with Guimberteau et al. (2012), the model runs for calibration and model testing were 

performed at 1° spatial resolution over the period 1980-2000, using the regional climate and 

wetland forcing for the Amazon from Guimberteau et al. (2012), forcing of land cover and land 

use change after Belward et al. (1999), Olson et al. (1983) and Hurtt et al. (2006), river flow 

directions from Vörösmarty et al. (2000), as well as soil parameters after Reynolds et al. (1999) 

and the Harmonized World Soil Data base (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009) compiled 

by Guenet et al., in prep. The necessary forcing data are listed in table 1. As temporal resolution, 

we use the default 30-minute time-step for all vertical exchanges of water, carbon and energy 

between atmosphere, vegetation, and soils, and the default 1-day time step for the lateral 

routing of water. In the following, the model description will be based on these spatial and 

temporal resolutions. To obtain initial soil carbon pools which are in steady-state with the 
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model set-up for the 1980-2000 period, the model was first run for 5000 years, looping over 

the full set of climate forgings and using the land use and an atmospheric pCO2 as 

representative for the year 1980. The terrestrial C pools simulated during this initialization 

phase were subsequently used for the simulation over the period 1980-2000 with changing land 

cover and increasing atmospheric pCO2.This section starts with the representation of the soil 

hydrology and the river routing scheme in ORCHIDEE and ORCHILEAK (section 2.1). Here, 

we give an overview of the features that are shared between the original version of ORCHIDEE 

(the configuration used by Guimberteau et al., 2012) and ORCHILEAK and we then highlight 

the improvements that have been implemented in ORCHILEAK. In the second part, the 

mathematical formulation of DOC production and leaching from the soil as well as transport 

and transformation of DOC and CO2 along the fluvial network is described (section 2.2).  

8.1.1.1. Hydrology 

Like most land surface schemes of ESMs, ORCHIDEE distinguishes two kinds of surface 

hydrology processes: (i) the water budget processes, which are mostly vertical and control the 

partitioning of precipitation into evapotranspiration, infiltration, production of surface runoff 

and drainage (section 2.1.1); (ii) the horizontal transfer, or routing, of grid-based simulated 

surface runoff and drainage along the river network (section 2.1.2, with improvements 

described in 2.1.3). 

 

Water budget and soil hydrology 

In the vegetation canopy, rainfall is partitioned between interception loss and throughfall 

according to the leaf area index (LAI). The throughfall (possibly increased by snowmelt in cold 

climates and by return flow from the floodplains, cf. section 2.1.2) is then further subdivided 

into infiltration into the soil and surface runoff produced by infiltration excess. In ORCHIDEE, 

the infiltration rate depends on precipitation rates, local slope, and vegetation and is limited by 

the hydraulic conductivity of the soil, which defines a Hortonian surface runoff (D’Orgeval et 

al. 2008). The corresponding parameterization is tightly linked to the soil moisture 

redistribution scheme, which is ruled by the Richards equation, solved here over a 2 m soil 

profile, using an 11-layer discretization, with layers of geometrically increasing depth (de 

Rosnay et al. 2002; Campoy et al. 2013). The redistribution of soil moisture is controlled by 

the soil hydraulic properties, transpiration and evaporation within the soil column, and a 

gravitational drainage at the soil bottom. All these processes are simulated at a 30 min time 
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step and a 1° resolution. In addition, a bottom return flow feeding the soil is also accounted for 

in presence of swamps, simulated at the daily time-step of the routing scheme (section 2.1.2). 

 

Table 1. List of forcing data needed to run ORCHILEAK. See text for explanations and Fig. 6 for an overview. 

Variable Spatial 

resolution 

Temporal 

resolution 

Data source 

Forcing data 

Rainfall 1° 6 hours Guimberteau et al. (2012), replaced original 

NCC data 

Snowfall 1° 6 hours NCC (Ngo-Duc et al., 2005) 

Air Temperature (close to surface) 1° 6 hours NCC (Ngo-Duc et al., 2005) 

Incoming shortwave radiation 1° 6 hours NCC (Ngo-Duc et al., 2005) 

Incoming  longwave radiation 1° 6 hours NCC (Ngo-Duc et al., 2005) 

Air pressure (close to surface) 1° 6 hours NCC (Ngo-Duc et al., 2005) 

Wind speed (10 m above surface) 1° 6 hours NCC (Ngo-Duc et al., 2005) 

Relative humidity (close to 

surface) 

1° 6 hours NCC (Ngo-Duc et al., 2005) 

Soil texture class 0.5° - Reynolds et al. (1999) 

Soil pH 0.5° - after HWSD v 1.1 (FAO et al., 2009) 

Soil bulk density 0.5° - after HWSD v 1.1 (FAO et al., 2009) 

Poor soils 0.5° - This study after HWSD v 1.1 (FAO et al., 2009) 

Land cover (and change) 0.5° annual after Belward et al. (1999), Olson et al. (1983) 

and Hurtt et al. (2006) 

Stream flow directions 0.5° - STN-30p (Vorosmarty et al., 2000) 

Topographic index (Topogrid x) 0.5° - STN-30p (Vorosmarty et al., 2000) 

Floodplains (%floodmax) 0.5° - After Guimberteau et al. (2012) 

Swamps (%swamp) 0.5° - After Guimberteau et al. (2012) 

River surface areas (Ariver) 0.5° - Lauerwald et al. (2015) 

10th, 50th, 90th percentile of the 

stream reservoir 

1° - derived from pre-runs with ORCHIDEE (see 

text) 

95th percentile of  water table 

height over flood plain  

1° - derived from pre-runs with ORCHIDEE (see 

text) 
 

 

Routing of water along the river network, floodplains and swamps 

The river routing module simulates the water exports from the soil column as river discharge 

along a distributed routing scheme, and it is possible to simulate lateral flows at a higher spatial 

resolution than the rest of the model to better describe the borders of watersheds within each 

grid-box and the directions of incoming / outgoing water from distinct basins (Fig.2). For that, 

each ORCHIDEE grid cell x is divided into multiple subunits named “basins”. As in our case, 

we run simulations at 1° resolution and use a routing scheme at 0.5° resolution (Vörösmarty et 

al., 2000), each grid cell is simply subdivided into four basins (Fig. 2). Note that all information 

derived from the forcing files or computed in the other modules has the resolution of the grid 

cell and is then downscaled to the basins within the routing module. In the following, variables 
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at grid scale are denoted by the index ‘grid x’, while information at basin scale are denoted by 

the index ‘i’. For a full overview of the variables and the system of indices used here, consult 

Table A.1 in the appendix.    

 

 

Figure 2. Schematic representation of 4 ORCHIDEE grids x at 1 degree spatial resolution for a simulation using 

a river routing scheme running at 0.5-degree resolution. 

 

The river routing aggregates the 30’ surface runoff and drainage computed by the soil 

hydrology module to the daily time step t of this module. As shown in Fig. 3, surface runoff 

and drainage initially feed a ‘fast‘ (Sfast,H2O) and a ‘slow‘ (Sslow,H2O) water reservoir, respectively 

(Eqs. 1,2). The proportions of runoff (FRO,H2O,grid x,t) and drainage (FDR,H2O,grid x,t) assigned to 

each basin i within the grid x are scaled to the area of the basin (Atotal,i) relative to that of the 

grid cell (Atotal,grid x.). Sfast and Sslow have distinct linear response time scales in each basin of the 

simulation domain, which are defined by a topographic index Topogrid x extracted from a forcing 

file (values range between 1 and 4 in our study area) and a factor τ which translates Topogrid x 

into a water residence time of each reservoir (Eqs. 3,4). Following the calibration of 

Guimberteau et al. (2012), both τfast and τslow are set to a value of 3.0 days. The river reservoir 

(Sriver) in each basin i is mainly fed by the outflows of Sfast, Sslow, and Sriver of the basins i-1 lying 

immediately upstream (Eqs. 5,6,7), but can, in addition, interact with two kinds of hydraulic 

sub-systems, the floodplains and the swamps, the maximum extent of which are defined by 

forcing files. Swamps are intended to mimic ground water fed wetlands. Where swamps are 

present, a constant fraction of the upstream inflow Fup (Eq. 7), which is scaled to the areal 

proportion of swamps (%swamp) in a given basin i, is diverted from the Sriver and added to the 

bottom of the soil column of the grid x containing the basin i (Fup2swamp, Eq. 8). Contrarily to 

the floodplains, the swamps are not represented by an explicit water body (Sflood). In the original 

version of ORCHIDEE, if floodplains are present, all the water coming from upstream not 

diverted to swamps is first directed to the floodplains (Fup2flood, Eqs. 9,10, see section 2.1.3 for 

an improved representation). Sflood then sustains a delayed return flow (Fflood out,H2O) to the river 

reservoir of the same basin i (Eqs. 11,12).  The water balance of the Sflood is in addition 

controlled by input from throughfall (FWD,H2O), evaporation (Fflood2atm,H2O) , or infiltration into 

Outline of grid cells

Outline of basins

Flow direction
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the soil (Fflood2soil,H2O) in the floodplain (Eq. 11), depending on the temporarily changing areal 

extent of the inundation %flood. The values of τriver and τflood used by Guimberteau et al. (2012) 

are 0.24 days and 2.5 days, respectively. Note that both Fflood out (Eq. 12) and Friver out (Eq. 6) are 

dependent on %flood as well. For further details see the publications of d’Orgeval et al. (2008) 

and Guimberteau et al. (2012). 

 

𝑆𝑓𝑎𝑠𝑡,𝐻2𝑂,𝑖,𝑡+1 = 𝑆𝑓𝑎𝑠𝑡,𝐻2𝑂,𝑖,𝑡 + 𝐹𝑅𝑂,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙
𝐴𝑡𝑜𝑡𝑎𝑙,𝑖

𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥

− 𝐹𝑓𝑎𝑠𝑡 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 

 

(1) 

 

𝑆𝑠𝑙𝑜𝑤,𝐻2𝑂,𝑖,𝑡+1 = 𝑆𝑠𝑙𝑜𝑤,𝐻2𝑂,𝑖,𝑡 + 𝐹𝐷𝑅,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙
𝐴𝑡𝑜𝑡𝑎𝑙,𝑖

𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥

− 𝐹𝑠𝑙𝑜𝑤 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 

 

(2) 

 

𝐹𝑓𝑎𝑠𝑡 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 =
𝑆𝑓𝑎𝑠𝑡,𝐻2𝑂,𝑖,𝑡

𝜏𝑓𝑎𝑠𝑡 ∙ 𝑇𝑜𝑝𝑜𝑔𝑟𝑖𝑑 𝑥

 

 

(3) 

 

𝐹𝑠𝑙𝑜𝑤 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 =
𝑆𝑠𝑙𝑜𝑤,𝐻2𝑂,𝑖,𝑡

𝜏𝑠𝑙𝑜𝑤 ∙ 𝑇𝑜𝑝𝑜𝑔𝑟𝑖𝑑 𝑥

 

 

(4) 

 

𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡+1 = 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡 + 𝐹𝑢𝑝2𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡 + 𝐹𝑓𝑙𝑜𝑜𝑑 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 − 𝐹𝑟𝑖𝑣𝑒𝑟 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 

 

(5) 

 

𝐹𝑟𝑖𝑣𝑒𝑟 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 =
𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡

𝜏𝑟𝑖𝑣𝑒𝑟 ∙ 𝑇𝑜𝑝𝑜𝑔𝑟𝑖𝑑 𝑥

∙ (1 − √%𝑓𝑙𝑜𝑜𝑑𝑖,𝑡) 

 

(6) 

 

 



Appendices 

214 

 

 
 
Figure 3. Simulated flows of water and C along the vegetation-soil-aquatic continuum. For reasons of simplicity, the fluxes 

(F) and storages (S) are characterized by subscripts indicating path or environmental compartment only (see Table A.1). Basin 

i-1 is the basin upstream of basin i, basin i+1 is the basin downstream of basin i. In this hypothetical example, swamps and 

floodplains are only present in basin i+1. The depiction of water and soil-river C fluxes in basins i+1 and i-1 were omitted for 

reasons of readability. Straight arrows represent water and C fluxes between the canopy (Scan), soil (Ssoil), fast (Sfast), slow 

(Sslow), river (Sriver) and flood (Sflood) reservoirs. Circular arrows represent carbon transformations within the reservoirs. See 

text for further details. 

 

 

𝐹𝑢𝑝,𝐻2𝑂,𝑖,𝑡 =  ∑ (𝐹𝑓𝑎𝑠𝑡 𝑜𝑢𝑡,𝐻2𝑂,𝑖−1,𝑡 + 𝐹𝑠𝑙𝑜𝑤 𝑜𝑢𝑡,𝐻2𝑂,𝑖−1,𝑡 + 𝐹𝑟𝑖𝑣𝑒𝑟 𝑜𝑢𝑡,𝐻2𝑂,𝑖−1,𝑡)
𝑖−1

 

 

(7) 

 

𝐹𝑢𝑝2𝑠𝑤𝑎𝑚𝑝,𝐻2𝑂,𝑖,𝑡 = 𝑓𝑠𝑤𝑎𝑚𝑝 ∙ 𝐹𝑢𝑝,𝐻2𝑂,𝑖,𝑡 ∙ %𝑠𝑤𝑎𝑚𝑝𝑖  

 

(8) 

 

𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡 = 𝐹𝑢𝑝,𝐻2𝑂,𝑖,𝑡 − 𝐹𝑢𝑝2𝑠𝑤𝑎𝑚𝑝,𝐻2𝑂,𝑖,𝑡 

 

(9) 

 

𝐹𝑢𝑝2𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡 = 𝐹𝑢𝑝,𝐻2𝑂,𝑖,𝑡 − 𝐹𝑢𝑝2𝑠𝑤𝑎𝑚𝑝,𝐻2𝑂,𝑖,𝑡 − 𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡 (10) 
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𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡+1 = 𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡 + 𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡 − 𝐹𝑓𝑙𝑜𝑜𝑑2𝑠𝑜𝑖𝑙,𝐻2𝑂,𝑖,𝑡

+ (𝐹𝑇𝐹,𝐻2𝑂,𝑖,𝑡 ∙ %𝑓𝑙𝑜𝑜𝑑𝑖,𝑡 − 𝐹𝑓𝑙𝑜𝑜𝑑2𝑎𝑡𝑚,𝐻2𝑂,𝑖,𝑡) − 𝐹𝑖,𝑓𝑙𝑜𝑜𝑑 𝑜𝑢𝑡,𝐻2𝑂,𝑡 

 

(11) 

 

 

𝐹𝑓𝑙𝑜𝑜𝑑 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 =
𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡

𝜏𝑓𝑙𝑜𝑜𝑑 ∙ 𝑇𝑜𝑝𝑜𝑔𝑟𝑖𝑑 𝑥

∙ %𝑓𝑙𝑜𝑜𝑑𝑖,𝑡 

 

(12) 

 

 

Improved floodplain dynamics 

Seasonal flooding in the Amazon is a major control of the hydraulic and C dynamics of the 

river system (Abril et al., 2014; Melack et al., 2009; Rasera et al., 2013; Richey et al., 1990, 

2002). This is particularly true in the central basin where the extent of flooded areas can 

increase from 4 to 16% of the total area (Hamilton et al., 2002; Hess et al., 2003; Richey et al., 

2002). In the following, we first present how flooding is simulated in the trunk-version of 

ORCHIDEE, summarizing mainly the work of D’Orgeval et al. (2008) and Guimberteau et al. 

(2012); next we describe improvements in simulated floodplain dynamics undertaken for 

ORCHILEAK in this study. Flooding is generally simulated in the temporal resolution of the 

routing module, in the default setting used in this study at the daily time-step. 

 

Original trunk version 

When floodplains are present in a given basin, all water inputs from upstream basins (Fup) 

which are not infiltrating in swamps (Fup2swamp) are routed to Sflood instead of Sriver (Eq. 9). After 

floodplain and river reservoirs have been updated with in- and outflows for each basin (Eqs. 

5,11), the inundated fraction %flood is calculated firstly for each grid-cell, and secondly for 

each basin within the grid cell. This sequential procedure is necessary, because the maximum 

floodable proportion (%floodmax), which is prescribed by the forcing file, is given at the 

resolution of the grid cells. %flood per grid x is calculated from the total water storage in the 

floodplain reservoirs (Sflood,H2O,grid x,t, Eq. 13) of all basins i contained in that grid cell, assuming 

a slightly convex slope of the floodable area (Eqs. 14,15), as this shape is typical of large 

lowland rivers like the Amazon (Hamilton et al., 2002; Huggett, 2016). In the original version 

of ORCHIDEE (Fig. 5), the computation is performed as follows: first, a potential fraction of 

flooded area (%floodpot) is calculated based on the total area of the grid cell (Atotal,grid x) and a 

potential water level height on the floodplain (floodcri, set to 2m by default) for which it is 

assumed that the whole grid cell is inundated (Eq. 14, Fig 5). The maximum flooded proportion 
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(%floodmax) of the grid cell is defined by values reported in the PRIMA forcing file (see below), 

that is, %flood cannot exceed %floodmax (Eq. 15). Second, the actual water level over the 

floodplain area (floodh) is calculated from %flood and the water storage in the floodplain 

reservoir Sflood,H2O (Eq. 16). Finally, the %flood of each basin i within the grid x is calculated 

based on the Sflood,H2O of the basin compared to that of the grid box and Atotal of the basin i 

compared to Atotal of grid x (Eq. 17).  

 

𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 = ∑ 𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡
𝑖

 

 

(13) 

 

%𝑓𝑙𝑜𝑜𝑑𝑝𝑜𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 = (
𝑆𝑔𝑟𝑖𝑑 𝑥,𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑡  ∙  3

𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥  ∙  𝑓𝑙𝑜𝑜𝑑𝑐𝑟𝑖
)

2
3

 

 

(14) 

 

%𝑓𝑙𝑜𝑜𝑑𝑔𝑟𝑖𝑑 𝑥,𝑡 = 𝑚𝑖𝑛 (%𝑓𝑙𝑜𝑜𝑑𝑝𝑜𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 , %𝑓𝑙𝑜𝑜𝑑𝑚𝑎𝑥,𝑔𝑟𝑖𝑑 𝑥) 

 

(15) 

 

𝑓𝑙𝑜𝑜𝑑ℎ𝑔𝑟𝑖𝑑 𝑥,𝑡 =  
2

3
∙ 𝑓𝑙𝑜𝑜𝑑𝑐𝑟𝑖 ∙ √%𝑓𝑙𝑜𝑜𝑑𝑔𝑟𝑖𝑑 𝑥,𝑡 +

𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡

(%𝑓𝑙𝑜𝑜𝑑ℎ𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙  𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥)
 

 

(16) 

 

%𝑓𝑙𝑜𝑜𝑑𝑖,𝑡 = %𝑓𝑙𝑜𝑜𝑑𝑔𝑟𝑖𝑑 𝑥,𝑡  ∙    

(
𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡   

𝑆𝑓𝑙𝑜𝑜𝑑,𝑔𝑟𝑖𝑑 𝑥,𝐻2𝑂,𝑡
)

(
𝐴𝑡𝑜𝑡𝑎𝑙,𝑖

𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥
)

 

 

(17) 

 

 

 

 

Figure 4. Overview of the Amazon Basin, with highlighted boundaries (thick grey) between the three major sub-basins (R. 

Solimoes, Madeira and Negro). The central Amazon basin (green box) and the sampling locations discussed in this study are 

also shown. River sampling locations and discharge gauges include:  Rio Japura at Acanaui (AC), Rio Xingu at Altamira (AL), 
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Rio Araguaia (AR), Rio Jurua at Gaviao (G), Rio Tapajos at Itaituba (I), Rio Purus at Labrea (L), Rio Solimoes at Manacapuru 

(M), Amazon River at Obidos (O), Rio Madeira at Porto Velho (PV), Rio Negro at Serrinha (SE), Rio Solimoes at Sao Paulo 

de Olivenca (SP) and Tabatinga (T). The contributing areas are shown by the different colour codes on the map, except for 

location T as it is very similar to location SP. The remaining ungauged terrestrial area is represented in yellow. Sampling 

locations for throughfall DOC are indicated by “TF” and report data from Tobon et al. (2004) (TF1), Filoso et al. (1999) (TF2), 

Johnson et al. (2006) (TF3) and Williams et al. (1997) (TF4). Sampling location for DOC concentration in surface runoff 

and/or head waters are indicated by “RO” and report data from Waterloo et al. (2006) (RO1), Saunders et al. (2006) (RO2) 

and Johnson et al. (2006) (RO3). The red box and red line represent large floodplain areas outside the central Amazon basin 

for which observations are available. 

 

Figure 5. Schematic representation of the floodplain dynamics in the trunk version of ORCHIDEE. The bold line corresponds 

to the assumed shape of the floodplain. In ORCHILEAK, floodcri is replaced by floodh95th, which represent the 95th percentile 

of the water level above the floodplain (floodh) over the simulation period 1980-2000. 

 

Table 2. Data sets used for model evaluation. 

Variable Spatial resolution Temporal resolution Data source 

Discharge Multiple locations bi-weekly ORE-HYBAM (Cochonneau et 

al., 2006) 

Discharge Multiple locations average monthly values GRDC (Global Runoff Data 

Center) 

Inundation in the Central Amazon 

basin 

- seasonality Richey et al. (2002) after (Hess 

et al., 2003) 

Inundation in Roraima and Llanos 

de Moxos wetland areas 

- multi-year time-series 

of monthly values 

Hamilton et al. (2011) 

Soil Organic Carbon stocks 1:5,000,000 - HWSD v 1.1 (FAO et al., 2009) 

Water temperature Multiple locations bi-weekly ORE-HYBAM (Cochonneau et 

al., 2006) 

Riverine DOC concentrations and 

fluxes 

Multiple locations Irregular time-series CAMREX (Richey et al., 2008), 

ORE-HYBAM  (Cochonneau et 

al., 2006), Moreira-Turcq et al. 

(2003) 

Seasonality of CO2 evasion from 

Central Amazon Basin 

- Seasonality with 

average monthly values 

Richey et al. (2002) 

CO2 evasion rates from the river 

surface at different sampling 

locations 

- Multiple values during 

high and low flow 

periods 

Rasera et al. (2013) 

 

 

The PRIMA forcing file was introduced by Guimberteau et al. (2012) to represent the 

maximum spatial extent of swamps and floodplains at the scale of the entire Amazon basin. 

fl
o
o
d
c
ri
 =

 2
m

Atotal,grid x

%floodmax,grid x
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The available global wetland (swamps and floodplains) forcings (Lehner and Döll, 2004) are 

underrepresenting swamp and floodplain areas in this region, and were thus not sufficient to 

simulate water retention needed to reproduce the hydrograph of the Amazon River. The 

PRIMA dataset was obtained using the maximum floodable areas derived from satellite 

imagery (Prigent et al., 2007), after subtraction of the vegetated proportion reported by 

Martinez and le Toan (2007). The vegetated part of the maximum floodable area was assigned 

to ‘swamp’ areas, which, as stated above, does not include a specific water body in 

ORCHIDEE. 

 

Changes in ORCHILEAK 

Although water retention in floodplains was validated by reproducing the water height over the 

floodplains (Guimberteau et al., 2012), the seasonality in flooded areas extent is still not well 

captured in the trunk version. Furthermore, according to the PRIMA forcing, the maximum 

floodable area in the central Amazon basin is < 5%, while according to Richey et al. (2002) the 

areal proportion of inundated area is comprised between 4 and 16%, leaving a temporarily 

flooded proportion of 12%. For the simulations with ORCHILEAK, we merged back the 

swamp and floodplain areas, thus relying directly on the maximum inundated area of Prigent 

et al. (2007), while, at the same time, keeping swamp areas as zone of return flow from the 

river to the bottom layer of the soil column (Fig. 6). With this modified forcing, %floodmax 

increases to 10% within the Central Amazon basin, in better agreement with observations. 

To improve the representation of seasonal flooding using updated values of %floodmax, the 

original equations to calculate the inflow of water to the floodplains and the extent of flooded 

area in each grid cell were altered as follows. Firstly, floodplains are now only inundated when 

a threshold in river discharge is exceeded (Fup lim, Eq. 18), and it is only the excess part of the 

river discharge that contributes to the flooding while the remainder is directly entering the next 

river reservoir (Eq. 19). The threshold is defined for each grid by the median river reservoir 

water storage of each grid cell over the simulation period (1980-2000), which is derived in a 

first simulation with flooding deactivated, and then used as a forcing file for the model (Fig. 

6). The choice of the median as threshold provides the advantage of a robust statistical measure 

and is similar to threshold of 90% of long-term mean discharge used by Vörösmarty et al. 

(1989) for the Amazon. This modification assumes that a fraction of river water continues to 

be transported by the river instead of being entirely diverted to the floodplains. 
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𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 = 𝑚𝑎𝑥 (𝐹𝑢𝑝,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 − 𝐹𝑢𝑝2𝑠𝑤𝑎𝑚𝑝,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 − 𝐹𝑢𝑝 𝑙𝑖𝑚,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥, 0) 

 

(18) 

 

𝐹𝑢𝑝2𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 = 𝑚𝑖𝑛 (𝐹𝑢𝑝,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 − 𝐹𝑢𝑝2𝑠𝑤𝑎𝑚𝑝,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 , 𝐹𝑢𝑝 𝑙𝑖𝑚,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥) 

 

(19) 

 

%𝑓𝑙𝑜𝑜𝑑𝑝𝑜𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 = (
𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙ 3

𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥 ∙ 𝑓𝑙𝑜𝑜𝑑ℎ𝑔𝑟𝑖𝑑 𝑥,95𝑡ℎ

)

2
3

 

 

(20) 

 

𝑓𝑙𝑜𝑜𝑑ℎ𝑔𝑟𝑖𝑑 𝑥,𝑡 =  
2

3
∙ 𝑓𝑙𝑜𝑜𝑑ℎ𝑔𝑟𝑖𝑑 𝑥,95𝑡ℎ ∙ √%𝑓𝑙𝑜𝑜𝑑𝑔𝑟𝑖𝑑 𝑥,𝑡 +

𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡

(%𝑓𝑙𝑜𝑜𝑑𝑚𝑎𝑥,𝑔𝑟𝑖𝑑 𝑥 ∙  𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥)
 

 

(21) 

 

 

While the default value for floodcri, as to be used in global modelling, was set to 2 m in the 

trunk version, this value is not applicable to the Amazon, where water levels of up to 12  m 

have been reported in the Central Amazon floodplain (Trigg et al., 2009). Thus, instead of 

using a single value for floodcri as previously done, we now first compute for each grid cell 

the 95th percentile of all simulated water level heights over the floodplain area for the 

simulation period 1980-2000 (floodh95th, Eq. 21, cf. Fig. 5). We used the regional data set of 

monthly inundated areas from Hamilton et al. (2011) for validation in the Roraima and Llanos 

de Moxos wetland areas, which covers part of our simulation period. For inundation in the 

central Amazon basin, we used the data from Hess et al. (2003) as summarized in Richey et al.  

(2002) for validation.  

 

𝐹𝑟𝑖𝑣𝑒𝑟 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 =
𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡

𝜏𝑟𝑖𝑣𝑒𝑟 ∙ 𝑇𝑜𝑝𝑜𝑔𝑟𝑖𝑑 𝑥

 

 

(22) 

 

Following the changes in the flooding scheme, we recalibrated two parameters in order to 

reproduce the monthly discharges from the Amazon and its major tributaries: 1) We decrease 

the water residence time on the floodplains by changing τflood from 2.5 days as used by 

Guimberteau et al. (2012) to 1.4 days (Eq. 12); and 2) we halved the proportion of water 

diverted to swamps by setting fswamp from 0.2 to 0.1 (Eq. 8), while using the same forcing for 

%swamp as Guimberteau et al. (2012). In addition, because %flood can now take values close 

to 100% in some areas, we modified the equation to calculate the outflow from the river 

reservoir, which is not decreased anymore depending of %flood (Eq. 22). The simulated river 

discharges were validated against gauging data from ORE-HYBAM (Cochonneau et al., 2006) 

and mean monthly discharges provided by the Global Runoff Data Centre (GRDC, n.d.).  
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In ORCHILEAK, for the purpose of calculating CO2 evasion from the river network, the river 

reservoir is now assigned a surface area as well (Ariver).  The base surface area Ariver (Ariver basic) 

per grid cell is extracted from a forcing file derived from the global river surface maps of 

Lauerwald et al. (2015). Following the findings by Rasera et al. (2013), we assume that the 

surface area of small rivers (Ariver small, width < 100m) can increase by about 20% from low to 

high water stages, whereas the area of larger rivers (Ariver large, width ≥ 100m) increases by about 

10%. Assuming the 10th and 90th percentile of Sriver,H2O over the simulation period 1980-2000 

(Sriver,H2O,grid x,10th, Sriver,H2O,grid x,90th, Fig. 6) as representative for the low and high water stages, 

an actual Ariver (Ariver act) is calculated at each time-step depending on Sriver,H20 (Eqs. 23-26). As 

the Ariver forcings likely underestimate the total Ariver (Lauerwald et al., 2015), it is assumed 

that Ariver basic represent Ariver at low water stage. Ariver act per basin i is calculated from Ariver per 

grid x containing that basin, scaling to the square root of Sriver,H2O, because Sriver,H2O is linearly 

related to discharge (Eq. 27) and it was empirically shown that stream width scales roughly 

with the square root of discharge (Raymond et al., 2012, 2013). Assuming that stream length 

does not change significantly, the relative change in stream width equals the relative change in 

Ariver act. 

 

𝐴𝑟𝑖𝑣𝑒𝑟 𝑏𝑎𝑠𝑖𝑐,𝑔𝑟𝑖𝑑 𝑥 = 𝐴𝑟𝑖𝑣𝑒𝑟 𝑠𝑚𝑎𝑙𝑙,𝑔𝑟𝑖𝑑 𝑥 +  𝐴𝑟𝑖𝑣𝑒𝑟 𝑙𝑎𝑟𝑔𝑒,𝑔𝑟𝑖𝑑 𝑥 

 

(23) 

 

If 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 ≤ 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,10𝑡ℎ:  

𝐴𝑟𝑖𝑣𝑒𝑟 𝑎𝑐𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 =  𝐴𝑟𝑖𝑣𝑒𝑟 𝑏𝑎𝑠𝑖𝑐,𝑔𝑟𝑖𝑑 𝑥 

 

(24) 

 

If 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,10𝑡ℎ < 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 < 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,90𝑡ℎ:  

𝐴𝑟𝑖𝑣𝑒𝑟 𝑎𝑐𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 = (1 +
𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 − 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,10𝑡ℎ 

𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,90𝑡ℎ

∙ 0.2) ∙ 𝐴𝑟𝑖𝑣𝑒𝑟 𝑠𝑚𝑎𝑙𝑙,𝑔𝑟𝑖𝑑 𝑥

+ (1 +
𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 −  𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,10𝑡ℎ 

𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,90𝑡ℎ

∙ 0.1) ∙ 𝐴𝑟𝑖𝑣𝑒𝑟 𝑙𝑎𝑟𝑔𝑒,𝑔𝑟𝑖𝑑 𝑥 

 

(25) 

 

 

 

If 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 ≥ 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,90𝑡ℎ:  

𝐴𝑟𝑖𝑣𝑒𝑟 𝑎𝑐𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 = 1.2 ∙ 𝐴𝑟𝑖𝑣𝑒𝑟 𝑠𝑚𝑎𝑙𝑙,𝑔𝑟𝑖𝑑 𝑥 + 1.1 ∙ 𝐴𝑟𝑖𝑣𝑒𝑟 𝑙𝑎𝑟𝑔𝑒,𝑔𝑟𝑖𝑑 𝑥 

 

(26) 

 

𝐴𝑟𝑖𝑣𝑒𝑟 𝑎𝑐𝑡,𝑖,𝑡 = 𝐴𝑟𝑖𝑣𝑒𝑟 𝑎𝑐𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙  
√𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡

√𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡

 

 

(27) 
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The difference between Ariver act and Ariver basic gives a seasonally flooded area directly adjacent 

to the river (%floodriver, Eqs. 28, 29). This flooded area induced by changes in water levels in 

the river was then added to the total flooded proportion of soils (%floodtotal, Eqs. 30,31). Note, 

however, that for the calculation of C inputs from flooded soils to the water column (section 

2.3), Sflood and Sriver need again to be distinguished. 

 

%𝑓𝑙𝑜𝑜𝑑𝑟𝑖𝑣𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡 =  
𝐴𝑟𝑖𝑣𝑒𝑟 𝑎𝑐𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 −  𝐴𝑟𝑖𝑣𝑒𝑟 𝑏𝑎𝑠𝑖𝑐,𝑔𝑟𝑖𝑑 𝑥

𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥

 (28) 

%𝑓𝑙𝑜𝑜𝑑𝑟𝑖𝑣𝑒𝑟,𝑖,𝑡 =  
(𝐴𝑟𝑖𝑣𝑒𝑟 𝑎𝑐𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 −  𝐴𝑟𝑖𝑣𝑒𝑟 𝑏𝑎𝑠𝑖𝑐,𝑔𝑟𝑖𝑑 𝑥) ∙ √𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡

𝐴𝑡𝑜𝑡𝑎𝑙,𝑖 ∙ √𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡

  (29) 

%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡 =  %𝑓𝑙𝑜𝑜𝑑𝑔𝑟𝑖𝑑 𝑥,𝑡 + %𝑓𝑙𝑜𝑜𝑑𝑟𝑖𝑣𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡 (30) 

%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑖,𝑡 =  %𝑓𝑙𝑜𝑜𝑑𝑖,𝑡 + %𝑓𝑙𝑜𝑜𝑑𝑟𝑖𝑣𝑒𝑟,𝑖,𝑡 (31) 

 

 

 

Figure 6. Overview of forcing files (cf. Table 2). Climatic forcings comprise, among others, variables like precipitation 

(FWD,H2O) and air temperature (Tair). The climatic forcings used here are based on the NCC ((Ngo-Duc et al., 2005) data set, 
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only FWD,H2O was replaced by a regional data set created by Guimberteau et al. (2012). The forcing of maximum floodable 

areas %floodmax was adopted from Guimberteau et al. (2012) after merging swamp areas (%swamp) into %floodmax.  

Simulations of inundation in ORCHILEAK are based on 10th, 50th and 90th percentile of water storage in the river reservoir 

Sriver (Sriver,H2O,10th, Sriver,H2O,50th, Sriver,H2O,90th), here given in mm which equals kg H2O m-2
 assuming a density of water of 

10-3 kg m-3,  and the 95th percentile of water table level over the floodplains floodh (floodh95th), all derived from simulation 

results over the period 1980 to 2000. Surface areas of small (width < 100 m) and large (width ≥ 100 m) rivers (Ariver small, Ariver 

large) are taken from Lauerwald et al. (2015). Of importance for representation of DOC cycling in watersheds of black water 

rivers is the identification of ‘poor soils’ (Podzols, Arenosols and soils in black water swamps), which we derived from the 

Harmonized World Soil Database (HWSD, FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009) and %swamp. 

 

8.1.1.2. Carbon dynamics along the vegetation-soil-aquatic continuum 

Overview of the DOC transport scheme 

DOC and CO2 are exported through the terrestrial-water interface by runoff (FRO) and drainage 

(FDR), respectively (Fig. 3). Part of the terrestrial DOC stems from throughfall (FTF = FWD2ground 

+ Fcan2ground, see below), the other part stems from the decomposition of litter and soil organic 

carbon (Fdec terr). DOC exports from flooded areas to the river network are another important 

source, because FTF and the decomposition of submerged litter and soil carbon in the 

floodplains (Fsoil2flood) add directly to the DOC storage in the overlying water column and, from 

there, a delayed flux (Fflood out) feeds Sriver.  In addition, streams and rivers extend laterally 

during high flow periods (see section 2.1.3) and there is thus a direct input of DOC from litter 

and SOC decomposition on/in seasonally inundated soils immediately adjacent to the stream 

bed into Sriver (Fsoil2river). DOC and CO2 are transported as passive tracers with the fluxes of 

water through the different reservoirs of the routing scheme (see section 2.1) and can feed back 

into the soil system via two mechanisms: 1) re-infiltration from the floodplain reservoir into 

the first layer of the soil column (Fflood2soil); 2) infiltration of DOC into the bottom layer of the 

soil column entrained with water entering swamps (Fup2swamp) (Fig. 3). In addition, DOC is 

mineralized to CO2 in transit and CO2 is evading to the atmosphere from the water surface. 

Depending on the relative magnitude between inputs, outputs and in-situ transformations, the 

storage of DOC in canopy, soil, fast, slow, river and floodplain reservoirs (Scan, Ssoil, Sfast, Sslow, 

Sriver, and Sflood) can thus increase or decrease over different time periods. For the routing of 

DOC, we distinguish two pools, a labile and a refractory pool. Like the cycling of water and C 

in vegetation and soils, the allochthonous inputs of DOC from Scan and Ssoil into the inland 

water network (FRO, FDR, Fsoil2flood, Fsoil2river, see Fig 3) are computed at a temporal resolution 

of 30 minutes and at the spatial resolution of the grid cell. The lateral transfer between the Sfast, 

Sslow, Sriver and Sflood and the transformation of C within those storage reservoirs are only 
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simulated at a daily time step and at the spatial resolution of the basin. Therefore, to simulate 

the lateral transfers, the allochthonous DOC and CO2 inputs are first aggregated over 48 30-

minute time steps until one full day is over. The fluxes from the water column back into the 

soil column (Fflood2soil,Fup2swamp in Fig. 3) are simulated at the daily time-step of the routing 

module, but are used as inputs in the soil carbon module, which runs at a 30 minute temporal 

resolution. This is achieved by downscaling the daily fluxes uniformly over the 48 30 minute 

time-steps of the following day of simulation. The evasion of CO2 from river and floodplain 

water surface (Friver2atm, Fflood2atm) is also simulated at the daily time-step of the routing module, 

but to approximate the continuous interplay of CO2 inputs and CO2 evasion controlling the 

water-air gradient in CO2 partial pressures (pCO2) a much shorter time-step of 6 minutes is 

used, and the CO2 inputs to the water column are thus uniformly distributed over the 240 6-

minutes time-step contained in each day. The following subsections describe in more detail the 

simulation of DOC in precipitation and throughfall (section 2.2.2), production of DOC and its 

export through the terrestrial-aquatic interface (section 2.2.3), CO2 inputs through the 

terrestrial-aquatic interface (2.2.4), and in-transit DOC mineralisation and CO2 evasion along 

the inland water network (section 2.2.5).  

 

DOC in precipitation and throughfall 

Reported average rain DOC concentrations in the Amazon basin are significant with 1.3 to 

3.9 mg C L-1 (Table 5, in most temperate regions average concentrations < 1 mg C L-1 are 

common, see Michalzik et al. 2001), of the same magnitude as observed concentrations in white 

and clear water rivers of the region (Moreira-Turcq et al., 2003). The spatial variation in rain 

DOC concentration is unknown and we thus assumed a constant value of 2.4 mg C L-1 

throughout the Amazon basin, from the average of reported literature values (Table 5).  

Observed average DOC concentrations in throughfall are higher than in precipitation because 

of the DOC enrichment of leaf-intercepted water due to evaporation losses and dissolution of 

organic carbon from leaf-leachates and dry deposition. Reported annual throughfall DOC flux 

(FTF) in the Amazonian rain forest varies little, from 14.8 to 19.0 g C m-2 yr-1 (see Table 5). 

The temporal variability in throughfall DOC concentrations is mainly controlled by the amount 

of throughfall, which acts as a dilution factor, and by the duration of preceding dry periods, 

which favours the accumulation of soluble organic C on the canopy (Johnson et al., 2006). 

Here, we used the time-series data on throughfall DOC fluxes in South Amazonia from Johnson 

et al. (2006) to set up and calibrate a simple model of throughfall DOC fluxes.  
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In ORCHILEAK, the wet deposition of DOC, FWD is calculated from precipitation and the 

prescribed constant concentration of 2.4 mg C L-1, which also equals the minimum throughfall 

concentration in the time-series by Johnson et al. (2006). For each of the 13 ORCHIDEE plant 

functional types (PFTs) which are potentially present in a grid cell, the wet deposition of DOC 

onto the canopy (FWD2can) and the direct precipitation of DOC onto the ground (FWD2ground) 

directly scales to the corresponding water fluxes simulated in the hydrology module. According 

to our simulation, FWD contributes to only about one third of the FTF at our calibration site (14.9 

g C m-2yr-1 (Johnson et al., 2006)). Thus we assumed that the unaccounted flux of 10 g C m-2 

yr-1 must originate from dry deposition onto the canopy or leaf leachates. We further assumed 

that this dry addition of soluble organic carbon (Fadd2can) does not vary over time and scales to 

the leaf biomass (which, in the model, is directly related to leaf area). Based on the simulated 

leaf biomass of 457±1 g C m-2 for tropical rain forests at the field-site location, we calibrated 

Fadd2can at 6*10-5 g C per day and per g C in the leaf biomass (Eq. 32). For agricultural and 

grass lands, we set Fadd2can to zero. 

Whenever intercepted water from the canopy falls to the ground (Fcan2ground), the related flux 

of DOC (Fcan2ground) will empty the storage of DOC in the canopy (Scan) at once unless a 

maximum concentration DOCmax of 100 mg DOC kgH2O
-1 (Eq. 33) in Fcan2ground is exceeded. 

This value corresponds to the maximum concentration observed by Johnson et al. (2006). 

Beyond this threshold, Fcan2ground is set as the product of the water flux and the maximum 

concentration, and the DOC in excess is assumed to remain in the canopy reservoir Scan. This 

threshold prevents unreasonably high DOC concentrations in the first throughfall events after 

dry periods and allows simulation of progressive depletion of the Scan reservoir after a time of 

significant DOC accumulation.  At each 30 min time step, FWD2can, Fadd2can and Fcan2ground are 

calculated and subsequently used to update the DOC storage in the canopy at each grid x and 

PFT v (Eq. 34).  

 

𝐹𝑎𝑑𝑑2𝑐𝑎𝑛,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 = 𝑙𝑒𝑎𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 ∙ 10−5
𝑑𝑡

𝑑𝑎𝑦
 

 

(32) 

 

𝐹𝑐𝑎𝑛2𝑔𝑟𝑜𝑢𝑛𝑑,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 = max (𝐹𝑐𝑎𝑛2𝑔𝑟𝑜𝑢𝑛𝑑,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 ∙ 0.1 𝑔 𝑘𝑔−1𝐻2𝑂, 𝑆𝑐𝑎𝑛,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡) 

 

(33) 

 

𝑆𝑐𝑎𝑛,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡+1

= 𝑆𝑐𝑎𝑛,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 + 𝐹𝑊𝐷2𝑐𝑎𝑛,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 + 𝐹𝑎𝑑𝑑2𝑐𝑎𝑛,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡

+ 𝐹𝑐𝑎𝑛2𝑔𝑟𝑜𝑢𝑛𝑑,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 

 

(34) 
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𝐹𝑇𝐹,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 = 𝐹𝑊𝐷2𝑔𝑟𝑜𝑢𝑛𝑑,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 + 𝐹𝑐𝑎𝑛2𝑔𝑟𝑜𝑢𝑛𝑑,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  

 

(35) 

 

𝐹𝑇𝐹,𝐷𝑂𝐶𝑙𝑎𝑏,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 =  𝐹𝑇𝐹,𝐷𝑂𝐶𝑟𝑒𝑓,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 = 0.5 ∙ 𝐹𝑇𝐹,𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  

 

(36) 

 

FTF is calculated as the sum of the non-intercepted wet deposition FWD2ground and Fcan2ground (Eq 

35).  Based on the range of values reported in the literature (Aitkenhead-Peterson et al., 2003), 

we assume that half of the DOC reaching the ground is labile (DOClab) while the other half is 

refractory (DOCref) (Eq. 36). FTF then infiltrates into the topsoil or adds to Sflood in areas where 

it falls on inundated land (see section 2.2.4). 

Production and export of soil DOC through the terrestrial-aquatic interface 

ORCHILEAK is largely based on ORCHIDEE-SOM, the new soil carbon module simulating 

microbial production and consumption of DOC, its adsorption and desorption onto/from 

mineral surfaces, the vertical advective and diffusive fluxes of DOC within the soil profile and 

the exports of DOC from the soil via surface runoff and drainage (Camino Serrano, 2015). 

Consistent with the soil hydrology module (Campoy et al., 2013; de Rosnay et al., 2002), the 

carbon dynamics are resolved using a discretization of a 2m-soil profile into 11 layers 

geometrically increasing in depth and running at a 30 minutes time-step (Camino Serrano, 

2015). 

DOC is produced from the decomposition of litter and soil organic carbon (SOC) (Eqs. 37-40), 

and consumed by further decomposition (Eqs. 41,42).  Here, the soil carbon module has been 

modified to better represent the soil DOC dynamics in the Amazon. First, decomposition on 

non-flooded (Fdec terr) and flooded (Fdec flood) soils is distinguished, with decomposition rates of 

the litter, SOC and DOC pools 3 times slower when soils are flooded (Rueda-Delgado et al., 

2006). Second, in ‘poor soils’ characterized by low pH and low nutrient levels such as Podzols, 

Arenosols or soils located in black water swamps (referred to as Igapo in the Amazon basin), 

decomposition rates are significantly reduced. Here, we assume a reduction by a factor of 2, 

following findings from the literature (Bardy et al., 2011; Vitousek and Hobbie, 2000; Vitousek 

and Sanford, 1986). This feature was implemented in the model by adding a layer defining the 

areal proportion of ‘poor soils’ in the soil-forcing file. The spatial distribution of Podzols and 

Arenosols was derived from the Harmonized World Soil Data base (FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2009). To determine the spatial distribution of Igapo forest soils, we used the 

PRIMA forcing for swamps in combination with the boundaries of the Rio Negro catchment 

as derived from the 0.5° river network (Fig. 6).  
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𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑆𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

=  𝑆𝑠𝑜𝑖𝑙,𝑆𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 ∙
𝑘𝑆𝑂𝐶 𝑝𝑜𝑜𝑙

1 + %𝑝𝑜𝑜𝑟𝑠𝑜𝑖𝑙𝑠𝑔𝑟𝑖𝑑 𝑥

 ∙ (1 − %𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡) 

 

(37) 

 

𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 =  𝑆𝑠𝑜𝑖𝑙,𝑆𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 ∙
𝑘𝑆𝑂𝐶 𝑝𝑜𝑜𝑙

1 + %𝑝𝑜𝑜𝑟𝑠𝑜𝑖𝑙𝑠𝑔𝑟𝑖𝑑 𝑥

 ∙
%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡

3
 

 

(38) 

 

𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑙𝑖𝑡𝑡𝑒𝑟 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

=  𝑆𝑠𝑜𝑖𝑙,𝑙𝑖𝑡𝑡𝑒𝑟 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 ∙
𝑘𝑙𝑖𝑡𝑡𝑒𝑟 𝑝𝑜𝑜𝑙

1 + %𝑝𝑜𝑜𝑟𝑠𝑜𝑖𝑙𝑠𝑔𝑟𝑖𝑑 𝑥

 ∙ (1 − %𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡) 

 

(39) 

 

𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑙𝑖𝑡𝑡𝑒𝑟 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 =  𝑆𝑠𝑜𝑖𝑙,𝑙𝑖𝑡𝑡𝑒𝑟 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 ∙
𝑘𝑙𝑖𝑡𝑡𝑒𝑟 𝑝𝑜𝑜𝑙

1 + %𝑝𝑜𝑜𝑟𝑠𝑜𝑖𝑙𝑠𝑔𝑟𝑖𝑑 𝑥

 ∙
%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡

3
 

 

(40) 

 

𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

=  𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 ∙
𝑘𝐷𝑂𝐶 𝑝𝑜𝑜𝑙

1 + %𝑝𝑜𝑜𝑟𝑠𝑜𝑖𝑙𝑠𝑔𝑟𝑖𝑑 𝑥

 ∙ (1 − %𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡) 

 

(41) 

 

𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 =  𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 ∙
𝑘𝐷𝑂𝐶 𝑝𝑜𝑜𝑙

1 + %𝑝𝑜𝑜𝑟𝑠𝑜𝑖𝑙𝑠𝑔𝑟𝑖𝑑 𝑥

 ∙
%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡

3
 

 

(42) 

 

The soil carbon module distinguishes 3 different pools of DOC depending on the source 

material: active, slow and passive (Camino Serrano, 2015). The DOC derived from the active 

SOC pool and metabolic litter is assigned to the active DOC pool, while the DOC derived from 

the slow and passive SOC pools are assigned to the slow and passive DOC pools, respectively 

(Eqs. 43-45). A part of DOC derived from structural plant litter, which is related to the lignin 

structure of the litter pool (Krinner et al., 2005), is allocated to the slow DOC pool, while the 

remainder feeds the active DOC pool. The proportion of the decomposed litter and SOC that 

is transformed into DOC instead of CO2 depends on the carbon use efficiency (CUE), set here 

to a value of 0.5 (Manzoni et al., 2012). Taken that the same residence time for the slow and 

passive DOC pools is used in ORCHIDEE-SOM (Camino Serrano, 2015), we merge these two 

pools when computing throughfall and lateral transport of DOC. Thus, the labile pool is 

identical to the active pool of the soil carbon module, while the refractory pool combines the 

slow and passive pools.  The labile (FTF,DOClab) and refractory (FTF,DOCref) proportions of 

throughfall DOC are added to the active and slow DOC pools of the first soil layer, respectively.  
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∆𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑎𝑐𝑡𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  

=  ∑ ((𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑙𝑖𝑡𝑡𝑒𝑟 𝑠𝑡𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡  +  𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑙𝑖𝑡𝑡𝑒𝑟 𝑠𝑡𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡)
11

𝑙=1

∙  (1 − %𝑙𝑖𝑔𝑛𝑖𝑛𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡) + 𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑙𝑖𝑡𝑡𝑒𝑟 𝑚𝑒𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡  

+  𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑙𝑖𝑡𝑡𝑒𝑟 𝑚𝑒𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 + 𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑆𝑂𝐶 𝑎𝑐𝑡𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

+  𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑎𝑐𝑡𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡) ∙  𝐶𝑈𝐸

− ∑ (𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝐷𝑂𝐶 𝑙𝑎𝑏𝑖𝑙𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 + 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑙𝑎𝑏𝑖𝑙𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡)
11

𝑙=1

+ 𝐹𝑇𝐹,𝐷𝑂𝐶𝑙𝑎𝑏,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 ∙ (1 − %𝑓𝑙𝑜𝑜𝑑𝑔𝑟𝑖𝑑 𝑥,𝑡) −  𝐹𝑅𝑂,𝐷𝑂𝐶 𝑎𝑐𝑡𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  

−  𝐹𝐷𝑅,𝐷𝑂𝐶 𝑎𝑐𝑡𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  −  𝐹𝐹𝑙𝑜𝑜𝑑 𝑖𝑛𝑝,𝐷𝑂𝐶 𝑎𝑐𝑡𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 

 

(43) 

 

 

 

 

 

 

 

 

 

∆𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  

=  ∑ ((𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑙𝑖𝑡𝑡𝑒𝑟 𝑠𝑡𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡  +  𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑙𝑖𝑡𝑡𝑒𝑟 𝑠𝑡𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡)
11

𝑙=1

∙  %𝑙𝑖𝑔𝑛𝑖𝑛𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 + 𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑆𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡  +  𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

+ 𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑆𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 + 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡) ∙  𝐶𝑈𝐸

− ∑ (𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝐷𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 +  𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡)
11

𝑙=1

+ 𝐹𝑇𝐹,𝐷𝑂𝐶𝑟𝑒𝑓,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 ∙ (1 − %𝑓𝑙𝑜𝑜𝑑𝑔𝑟𝑖𝑑 𝑥,𝑡) −  𝐹𝑅𝑂,𝐷𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  

−  𝐹𝐷𝑅,𝐷𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  −  𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 

 

(44) 

 

 

 

 

 

 

 

 

 

∆𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  

=  ∑ (𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝑆𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 +  𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡) 
11

𝑙=1
∙  𝐶𝑈𝐸

− ∑ (𝐹𝑑𝑒𝑐 𝑡𝑒𝑟𝑟,𝐷𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 + 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡)
11

𝑙=1

− 𝐹𝑅𝑂,𝐷𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  −  𝐹𝐷𝑅,𝐷𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡  

−  𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 

 

(45) 

 

 

 

 

 

 

Alongside with decomposition, DOC is lost from the soil column through lateral exports with 

surface runoff and / or drainage, which occur at the top and bottom of the soil column, 

respectively. The DOC export by drainage at the bottom of the soil is proportional to the DOC 

concentration in the deepest (11th) soil layer (Eq. 46). Surface runoff occurs when the maximum 

infiltration rate is exceeded, beyond which the excess water does not enter the soil column 

anymore. Because the first soil layers are extremely thin, it is assumed here that surface runoff 

can entrain DOC from the first five layers of the soil column, which together have a thickness 

of 4.5 cm (Eq. 47). In each basin, the DOC release is proportional to the mean DOC 
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concentration in this zone of the soil column as well as to the areal extent of the saturated zone 

around headwaters, as detailed below. To simulate the DOC production in flooded areas, we 

assume that the DOC produced from the decomposition of litter and SOC within these same 5 

topsoil layers adds directly to the DOC storage in the overlying surface water body Sflood (see 

Fig. 3, Eqs. 48-50). Accordingly, the inputs of DOC to the non-flooded soils via Fdec terr are 

estimated using the non-flooded proportion of the grid cell (1-%𝑓𝑙𝑜𝑜𝑑𝑖,𝑡) (Eqs. 37, 39, 41). 

 

FDR,DOC pool,grid x,v,t = min(𝐹𝐷𝑅,𝐻2𝑂,𝑖,𝑣,𝑡 ∙  
𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙=11,𝑡

𝑆𝑠𝑜𝑖𝑙,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙=11,𝑡
 , 

Ssoil,DOC pool,grid x,v,l=11,t) 

 

(46) 

 

 

FRO,DOC pool,grid x,v,t = min(𝐹𝑅𝑂,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 ∙  
∑ 𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

5
𝑙=1

∑ 𝑆𝑠𝑜𝑖𝑙,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡
5
𝑙=1

 ∙ 𝑟𝑒𝑑𝑅𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 , 

∑ 𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡
5
𝑙=1 ) 

 

(47) 

 

 

𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑎𝑐𝑡𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡

=  ∑ (𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑙𝑖𝑡𝑡𝑒𝑟 𝑠𝑡𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 ∙  (1 − %𝑙𝑖𝑔𝑛𝑖𝑛𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡)
5

𝑙=1

+ 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑙𝑖𝑡𝑡𝑒𝑟 𝑚𝑒𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 + 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑎𝑐𝑡𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡) ∙  𝐶𝑈𝐸 

 

(48) 

 

 

 

𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡

=  ∑ (𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑙𝑖𝑡𝑡𝑒𝑟 𝑠𝑡𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡 ∙  %𝑙𝑖𝑔𝑛𝑖𝑛𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

5

𝑙=1

+ 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑠𝑙𝑜𝑤,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡) ∙  𝐶𝑈𝐸 

 

(49) 

 

 

 

𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 =  ∑ 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡  
5

𝑙=1
∙  𝐶𝑈𝐸 

 

(50) 

 

The usually higher DOC concentration in the topsoil compared to the subsoils is mainly due to 

the higher inputs of plant litter into and onto the topsoil. However, DOC is efficiently 

transported between the soil layers along with the vertical flow of water through the soil matrix 

(Fsoil adv, Eqs. 51-52).  Therefore, a part of the DOC exported with the drainage is not produced 

in-situ but rather originates from percolation across the entire soil column.  The vertical DOC 

transport within the soils, as well as for the export of DOC with surface runoff are not directly 

computed as the product of water flux and DOC concentration. Instead, a reduction factor 

(𝑟𝑒𝑑𝐷𝑂𝐶) is applied to account for the effect of preferential vertical flow paths, e.g. along 

macrospores produced by the root system (Karup et al., 2016), and zones of reduced flow rates 

which increase the DOC residence time in the remaining parts of the soil. Only in “poor soils” 
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the flow of DOC is not reduced relative to the flow of water (no reduction, Eq. 54). This allows 

to account for their poor filtering capacity which is the cause of the very high DOC 

concentrations in groundwater below Podzols and black water swamps (Brinkmann, 1984; 

McClain et al., 1997). While the effect of preferential flow path should be envisioned as a 

general concept in ORCHILEAK, the introduction of ‘poor soils’ is specific to tropical black 

water systems. It remains to be shown in future work how their effects will have to be 

parametrized in other climate zones, for instance in the Boreal zone where Podzols are 

abundant.  

 

𝐹𝑠𝑜𝑖𝑙 𝑎𝑑𝑣,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙→𝑙+1,𝑡

= 𝑚𝑎𝑥 (𝐹𝑠𝑜𝑖𝑙 𝑎𝑑𝑣,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙→𝑙+1,𝑡  ∙  
𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

𝑆𝑠𝑜𝑖𝑙,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

∙ 𝑟𝑒𝑑𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥, 0) 

 

(51) 

 

 

𝐹𝑠𝑜𝑖𝑙 𝑎𝑑𝑣,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙→𝑙−1,𝑡

= 𝑚𝑎𝑥 (𝐹𝑠𝑜𝑖𝑙 𝑎𝑑𝑣,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙→𝑙−1,𝑡  ∙  
𝑆𝑠𝑜𝑖𝑙,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

𝑆𝑠𝑜𝑖𝑙,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡

∙ 𝑟𝑒𝑑𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥, 0) 

 

(53) 

 

 

 

𝑟𝑒𝑑𝑅𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 = 𝑟𝑒𝑑𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥  ∙ 𝑟𝑒𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 

 

(53) 

 

𝑟𝑒𝑑𝐷𝑂𝐶,𝑔𝑟𝑖𝑑 𝑥 = (1 − %𝑝𝑜𝑜𝑟𝑠𝑜𝑖𝑙𝑠) ∙ 𝑟𝑒𝑑𝐷𝑂𝐶,𝑏𝑎𝑠𝑒 + %𝑝𝑜𝑜𝑟𝑠𝑜𝑖𝑙𝑠 

 

(54) 

 

𝑟𝑒𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡,𝑔𝑟𝑖𝑑 𝑥,𝑡 = 𝑚𝑖𝑛 (
(𝑆𝑓𝑎𝑠𝑡,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 + 𝑆𝑠𝑙𝑜𝑤,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡) 0.5

𝑆𝑓𝑎𝑠𝑡+𝑠𝑙𝑜𝑤,𝐻2𝑂,𝑟𝑒𝑓
0.5 , 1) 

 

(55) 

 

DOC exports with surface runoff is even further reduced, because the riverine DOC mostly 

derives from saturated soils in direct vicinity to surface waters (Idir et al., 1999). As we do not 

have direct information on the density of headwater streams at small scale and the extent of the 

saturated, riparian zone, the reduction in DOC exports with surface runoff (redconnect) was 

scaled to the storage of water in Sfast and Sslow (Eq. 55). We assumed these reservoirs to represent 

the water stored in groundwater and headwater streams (Sriver being attributed to wider water 

bodies due to the coarse resolution (0.5°) of the river network). Next, based on model 

calibration, we set a threshold value for the sum of Sfast,H2O and Sslow,H2O (𝑆𝑓𝑎𝑠𝑡+𝑠𝑙𝑜𝑤,𝐻2𝑂,𝑟𝑒𝑓) at 

which a 100% connection between top soils and headwaters is achieved. When 

𝑆𝑓𝑎𝑠𝑡+𝑠𝑙𝑜𝑤,𝐻2𝑂,𝑟𝑒𝑓 does not reach the threshold, a lower proportion of topsoil is in connection 

with the headwaters. Consistent with our approach in section 2.1.3, we assumed here that the 
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extent of saturated soils around headwaters (i.e. the connected topsoils) increases linearly with 

the square root of the sum of Sfast,H2O and Sslow,H2O. Finally, the maximum amount of DOC that 

can be exported through surface runoff and drainage is limited by the storage of DOC in the 

top and bottom soil layers (Eqs. 46-47). 

Export of dissolved CO2 through the soil-aquatic network interface 

Although mineralization of litter, SOC, DOC in the soil are simulated in ORCHIDEE, the CO2 

partial pressure in the soil air and soil solution of the different layers is not represented. Thus, 

we implemented simple estimates of these soil-derived CO2 inputs in order to reproduce the 

observed CO2 evasion fluxes from the water surface of the fluvial network. For simulating the 

export of CO2 with surface runoff and drainage, we use fixed concentrations of 20 mg C L-1 

(pCO2 of 50,000 µatm at 25°C) and 2 mg C L-1 (pCO2 of 5,000 µatm at 25°C), respectively, 

derived from reported literature values (Davidson et al., 2010; Johnson et al., 2008; Saunders 

et al., 2006). The lateral exports of CO2 dissolved in soil water are then calculated by 

multiplying these CO2 concentrations with the water fluxes from surface runoff and drainage 

simulated at half-hourly time-step in the soil hydrology module (Eqs. 56,57). Next, the 

computed lateral fluxes of CO2 exported out of soils are subtracted from the total soil 

respiration and the remainder, by far the dominant fraction (Davidson et al., 2010), is assumed 

to evade directly to the atmosphere through the topsoil (Eq. 58). Carbonate chemistry and 

export of alkalinity are neglected. 

 

𝐹𝑅𝑂,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑡 = 𝐹𝑅𝑂,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙ 𝑤𝑅𝑂,𝐶𝑂2
 

 

(56) 

 

𝐹𝐷𝑅,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑡 = 𝐹𝐷𝑅,𝐻2𝑂,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙ 𝑤𝐷𝑅,𝐶𝑂2
 

 

(57) 

 

𝐹𝑠𝑜𝑖𝑙2𝑎𝑡𝑚,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑡 =  𝐹𝑠𝑜𝑖𝑙 𝑟𝑒𝑠𝑝,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑡 −  𝐹𝑅𝑂,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑡 − 𝐹𝐷𝑅,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑡 

 

(58) 

 

𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑡

=  ∑ (∑ ((∑ 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑙𝑖𝑡𝑡𝑒𝑟 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡
𝑙𝑖𝑡𝑡𝑒𝑟 𝑝𝑜𝑜𝑙

 
11

𝑙=1

13

𝑣=1

+ ∑ 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝑆𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡
𝑆𝑂𝐶 𝑝𝑜𝑜𝑙

+ ∑ 𝐹𝑑𝑒𝑐 𝑓𝑙𝑜𝑜𝑑,𝐷𝑂𝐶 𝑝𝑜𝑜𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑙,𝑡
𝐷𝑂𝐶 𝑝𝑜𝑜𝑙

)

∙ (1 − 𝐶𝑈𝐸)) + 𝐹𝑟𝑜𝑜𝑡 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡 ∙ %𝑓𝑙𝑜𝑜𝑑𝑔𝑟𝑖𝑑 𝑥,𝑡) 

 

(59) 
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In floodplains, mineralisation of submerged litter and soil carbon are considered to be sources 

of CO2 to Sflood (Eq. 59). In addition, we allocated the root respiration in inundated areas to the 

“CO2 inputs to Sflood” term. The lateral transfer of CO2 by advection and the re-infiltration of 

dissolved CO2 into swamps and on floodplains are simulated following the approach 

implemented for DOC (Fig. 3, and preceding subsections). 

Carbon transport and transformation along the inland water network 

Transport and transformation of terrestrially derived C in the river system are implemented into 

the river routing module. The lateral transport of DOC and CO2 between reservoirs are assumed 

to be proportional to the water fluxes, that is, the exports from each reservoir to the next have 

the same concentration of DOC and CO2 as in the reservoir from which they originate (Eq. 60). 

The same holds true for infiltration on the floodplains (Fflood2soil, Eq. 61). The inputs from 

upstream Fup are the sum of Ffast out, Fslow out, Friver out of all basins i-1 lying directly upstream 

(Eq. 62), and inputs into swamps (Fup2swamp, Eq. 63), Sflood (Fup2flood, Eq. 64) and Sriver (Fup2river, 

Eq. 65) have all the same concentrations as Fup.      

 

𝐹∗ 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 = 𝐹∗ 𝑜𝑢𝑡,𝐻2𝑂,𝑖,𝑡 ∙  
𝑆∗,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡

𝑆∗,𝐻2𝑂,𝑖,𝑡

 

 

*: ‘fast’, ‘slow’, ‘stream’, or ‘flood’ reservoir; C spec: DOClab, DOCref, CO2 

 

(60) 

 

 

 

𝐹𝑓𝑙𝑜𝑜𝑑2𝑠𝑜𝑖𝑙,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 = 𝐹𝑓𝑙𝑜𝑜𝑑2𝑠𝑜𝑖𝑙,𝐻2𝑂,𝑡 ∙  
𝑆𝑓𝑙𝑜𝑜𝑑,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡

𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡

 

 

(61) 

 

𝐹𝑢𝑝,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 =  ∑(𝐹𝑓𝑎𝑠𝑡 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖−1,𝑡 +  𝐹𝑠𝑙𝑜𝑤 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖−1,𝑡 +  𝐹𝑟𝑖𝑣𝑒𝑟 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖−1,𝑡

𝑖−1

 

 

(62) 

 

𝐹𝑢𝑝2𝑠𝑤𝑎𝑚𝑝,𝐶 𝑠𝑝𝑒𝑐,𝑡 = 𝐹𝑢𝑝2𝑠𝑤𝑎𝑚𝑝,𝐻2𝑂,𝑡 ∙  
𝐹𝑢𝑝,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡

𝐹𝑢𝑝,𝐻2𝑂,𝑖,𝑡

 

 

(63) 

 

𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 = 𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑡 ∙  
𝐹𝑢𝑝,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡

𝐹𝑢𝑝,𝐻2𝑂,𝑖,𝑡

 

 

(64) 

 

𝐹𝑢𝑝2𝑟𝑖𝑣𝑒𝑟,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 = 𝐹𝑢𝑝,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 − 𝐹𝑢𝑝2𝑠𝑤𝑎𝑚𝑝,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 − 𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 

 

(65) 

 

As discussed above, in the routing scheme, we distinguish two pools of DOC: the labile 

(DOClab), which corresponds to the active DOC pool of the soil carbon module, and the 
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refractory pool (DOCref), which combines the slow and passive pool of the soil carbon module. 

For each pool, the DOC stocks in Sfast and Slow are then updated from the balance between the 

C inputs simulated in the soil carbon module at 30 minute time-step and aggregated to the one 

day time step of the routing module, and the outflows of C which are proportional to the water 

fluxes (Eqs. 66, 67). Sriver in basin i is augmented by the sum of outflows from the fast, slow 

and river reservoirs of the basins located directly upstream (i-1), minus the flows diverted to 

the subsoil of swamps and into floodplains (Eq. 68). The floodplains (Sflood) receive inputs from 

upstream (𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑) and transfer C to the river reservoir (𝐹𝑓𝑙𝑜𝑜𝑑 𝑜𝑢𝑡) and via infiltration into 

the soil (Fflood2soil) (Eq. 69). The inputs of DOC from the decomposition of inundated SOC and 

litter are added to Sriver and Sflood according to their contribution to the total fraction of inundated 

soil (%floodtotal).  

𝑆𝑓𝑎𝑠𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡+1 = 𝑆𝑓𝑎𝑠𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 + 𝐹𝑅𝑂,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 − 𝐹𝑓𝑎𝑠𝑡 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡  

 

(66) 

 

𝑆𝑠𝑙𝑜𝑤,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡+1 = 𝑆𝑠𝑙𝑜𝑤,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 + 𝐹𝐷𝑅,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 − 𝐹𝑠𝑙𝑜𝑤 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 

 

(67) 

 

𝑆𝑟𝑖𝑣𝑒𝑟,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡+1 = 𝑆𝑟𝑖𝑣𝑒𝑟,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 + 𝐹𝑢𝑝2𝑟𝑖𝑣𝑒𝑟,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 + 𝐹𝑓𝑙𝑜𝑜𝑑 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 − 𝐹𝑟𝑖𝑣𝑒𝑟 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡

+ ∑ (𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐶 𝑠𝑝𝑒𝑐,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡)
13

𝑣=1
∙

𝑑𝑡

𝑑𝑎𝑦
∙

%𝑓𝑙𝑜𝑜𝑑𝑟𝑖𝑣𝑒𝑟,𝑖,𝑡 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙,𝑖

%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥

 

 

(68) 

 

 

 

𝑆𝑓𝑙𝑜𝑜𝑑,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡+1 = 𝑆𝑓𝑙𝑜𝑜𝑑,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 + 𝐹𝑢𝑝2𝑓𝑙𝑜𝑜𝑑,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 − 𝐹𝑓𝑙𝑜𝑜𝑑2𝑠𝑜𝑖𝑙,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 + 𝐹𝑇𝐹,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 ∙ %𝑓𝑙𝑜𝑜𝑑𝑖,𝑡

− 𝐹𝑓𝑙𝑜𝑜𝑑 𝑜𝑢𝑡,𝐶 𝑠𝑝𝑒𝑐,𝑖,𝑡 + ∑ (𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐶 𝑠𝑝𝑒𝑐,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡)
13

𝑣=1
∙

𝑑𝑡

𝑑𝑎𝑦

∙
%𝑓𝑙𝑜𝑜𝑑𝑖,𝑡 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙,𝑖

%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥

 

 

For Eqs. 68, 69: Fsoil2flood only for DOC; for CO2, see Eqs. 83, 84 

 

(69) 

 

 

 

 

 

 

 

At each daily time-step, after the lateral transfers along the flow path have been calculated, 

DOC decomposition and CO2 evasion within the river and floodplain reservoirs are simulated. 

The continuous CO2 production and CO2 evasion from the aquatic network are computed using 

a much finer integration time step of 1/240 day (6 min) than the one of the river routing scheme 

to ensure precision of our numerical scheme. In addition, CO2 inputs from the decomposition 

from flooded SOC and litter are also added at the same time-step to represent the continuous 

additions of CO2 during the water-atmosphere gas exchange. 

For each 6-min time step, the pCO2 in the water column is calculated from the concentration 

of dissolved CO2 and the temperature dependent solubility of CO2 (KCO2) (Eq. 70). The water 
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temperature (Twater) needed to calculate KCO2 (Telmer and Veizer, 1999) (Eq. 71) is derived 

from the average air temperature close at the ground (Tground) over the whole one-day-time-step 

of the routing scheme  (Eq. 72, R2=0.56, σ=0.91°C). This equation was empirically derived 

using values from the ORE-HYBAM dataset (Cochonneau et al., 2006) observed at a 10 day 

interval over the years 1999 and 2000 at 3 sampling locations (Fig. 7, see Fig. 4 for location). 

As the linear fits for each sampling location are quite similar (Fig. 6 a), we consider the 

prediction equation derived for the total of observed data as representative. Note that the slope 

is quite similar to that (0.82) found by Lauerwald et al. (2015) for average monthly Twater using 

a global data set. Furthermore, we investigated whether the correlations could be improved by 

introducing a time-lag between Twater and Tground, as suggested in the literature (Ducharne, 2008; 

Van Vliet et al., 2011). However, no significant improvement could be achieved (Fig. 7 b), and 

we thus maintained Eq. (72) as predictor of water temperature.  

 

𝑝𝐶𝑂2𝐻2𝑂,∗,𝑖,𝑡 =
𝑆∗,𝐶𝑂2,𝑖,𝑡

𝑆∗,𝐻2𝑂,𝑖,𝑡 ∙ 12.011 ∙ 𝐾𝐶𝑂2

 

* stands for slow, fast, river, flood 

 

(70) 

 

 

𝐾𝐶𝑂2,𝑖,𝑡 =  10(2.22∙10−6∙𝑇𝑤𝑎𝑡𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡
3+1.91∙10−5∙𝑇𝑤𝑎𝑡𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡

2+1.63∙10−2∙𝑇𝑤𝑎𝑡𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡−1.11) 

 

(71) 

 

𝑇𝑤𝑎𝑡𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡 =  6.13°𝐶 + 0.80 ∙  𝑇𝑔𝑟𝑜𝑢𝑛𝑑,𝑔𝑟𝑖𝑑 𝑥,𝑡 

 

(72) 
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Figure 7. Predictability of water temperature (Twater) from simulated ground temperature (Tground). a) Linear regressions 

between Twater and Tground recorded on the same day. The black line represents the linear fit through all data combined, while 

the coloured dashed lines represent the linear fits per sampling location. b) Changes in RMSE (σ) of the prediction equation 

per sampling location after applying different time lags to the predictor, Tground.  

The same water temperature is used for the calculation of the Schmidt number (SC) 

(Wanninkhof, 1992) (Eq. 73), which is needed to calculate the actual gas exchange velocity 

from the standard conditions k600 (Eqs. 74, 75). We used distinct values of k600 for rivers 

(kriver,600), and for swamps (kswamp,600) to account for the reduced effect of the wind in flooded 

forests. The value kswamp,600 = 0.65 m d-1 is taken from Richey et al. (2002) while the value for 

kriver,600 = 3.5 m d-1 corresponds to the average of the values reported in Alin et al. (2011). For 

the calculation of kflood,600 on the floodplains, we assumed that open floodplains have the same 

gas exchange velocity than the rivers, while within flooded forests (represented by %swamp), 

the gas exchange velocity is set to kswamp,600. As the gas exchange is calculated for the whole 

floodplain, and is thus a combination of open-water floodplain and swamps, the average kflood 

is calculated according to the vegetated and open proportions (Eq. 75). In rivers and 

floodplains, the CO2 evasion is calculated based on the pCO2, the gas exchange velocity, and 

the surface water area available for gas exchange, which changes at the daily time-step (Eqs. 

76, 77). The maximum possible CO2 evasion per time-step is constrained by the amount of 

dissolved CO2 in excess to the hypothetical equilibrium with the atmospheric pCO2. For Sfast, 

for which a surface area is not known, full equilibration with the atmosphere is assumed (Eq. 

78). For Sslow, which we consider as groundwater storage even though a ground water table 

itself is not simulated, no gas exchange is assumed. 

 

𝑆𝐶𝑖,𝑡 =  1911 − 118.11 ∙ 𝑇𝑤𝑎𝑡𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡 + 3.453 ∙ 𝑇𝑤𝑎𝑡𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡
2 − 0.0413 ∙ 𝑇𝑤𝑎𝑡𝑒𝑟,𝑔𝑟𝑖𝑑 𝑥,𝑡

3 

 

(73) 

 

𝑘𝑟𝑖𝑣𝑒𝑟,𝑖,𝑡 = 𝑘𝑟𝑖𝑣𝑒𝑟,6𝑜𝑜 ∙  √
600

𝑆𝐶𝑖,𝑡

 

 

(74) 

 

𝑘𝑓𝑙𝑜𝑜𝑑,𝑖,𝑡 = ((1 −
%𝑠𝑤𝑎𝑚𝑝

%𝑓𝑙𝑜𝑜𝑑𝑚𝑎𝑥

) ∙ 𝑘𝑟𝑖𝑣𝑒𝑟,6𝑜𝑜 +  (
%𝑠𝑤𝑎𝑚𝑝

%𝑓𝑙𝑜𝑜𝑑𝑚𝑎𝑥

) ∙  𝑘𝑠𝑤𝑎𝑚𝑝,600) ∙ √
600

𝑆𝐶𝑖,𝑡

 

 

(75) 

 

𝐹𝑟𝑖𝑣𝑒𝑟2𝑎𝑡𝑚,𝐶𝑂2,𝑖,𝑡 = min (𝐾𝐶𝑂2,𝑖,𝑡 ∙ (𝑝𝐶𝑂2 𝑟𝑖𝑣𝑒𝑟,𝑖,𝑡 − 𝑝𝐶𝑂2 𝑎𝑡𝑚,𝑡) ∙ 12.011 ∙ 𝐴𝑟𝑖𝑣𝑒𝑟 𝑎𝑐𝑡,𝑖,𝑡 ∙ 𝑘𝑟𝑖𝑣𝑒𝑟,𝐶𝑂2,𝑖,𝑡

∙
𝑑𝑡

day
∙ 103, 𝐾𝐶𝑂2,𝑖,𝑡 ∙ (𝑝𝐶𝑂2 𝑟𝑖𝑣𝑒𝑟,𝑖,𝑡 − 𝑝𝐶𝑂2 𝑎𝑡𝑚,𝑡) ∙ 12.011 ∙ 𝑆𝑟𝑖𝑣𝑒𝑟,𝐻2𝑂,𝑖,𝑡 ∙ 10³) 

 

(76) 
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𝐹𝑓𝑙𝑜𝑜𝑑2𝑎𝑡𝑚,𝐶𝑂2,𝑖,𝑡 = min (𝐾𝐶𝑂2,𝑖,𝑡 ∙ (𝑝𝐶𝑂2 𝑓𝑙𝑜𝑜𝑑,𝑖,𝑡 − 𝑝𝐶𝑂2 𝑎𝑡𝑚,𝑡) ∙ 12.011 ∙ 𝐴𝑓𝑙𝑜𝑜𝑑,𝑖,𝑡 ∙ 𝑘𝑓𝑙𝑜𝑜𝑑,𝐶𝑂2,𝑖,𝑡 ∙
𝑑𝑡

day

∙ 103, 𝐾𝐶𝑂2,𝑖,𝑡 ∙ (𝑝𝐶𝑂2 𝑓𝑙𝑜𝑜𝑑,𝑖,𝑡 − 𝑝𝐶𝑂2 𝑎𝑡𝑚,𝑡) ∙ 12.011 ∙ 𝑆𝑓𝑙𝑜𝑜𝑑,𝐻2𝑂,𝑖,𝑡 ∙ 10³) 

 

(77) 

 

 

𝐹𝑓𝑎𝑠𝑡2𝑎𝑡𝑚,𝐶𝑂2,𝑖,𝑡 = 𝐾𝐶𝑂2,𝑖,𝑡 ∙ (𝑝𝐶𝑂2 𝑓𝑎𝑠𝑡,𝑖,𝑡 − 𝑝𝐶𝑂2 𝑎𝑡𝑚,𝑡) ∙ 12.011 ∙ 𝑆𝑓𝑎𝑠𝑡,𝐻2𝑂,𝑖,𝑡 ∙ 103 

 

(78) 

 

 

The instream decomposition of terrestrial DOC is calculated using base rate constants for labile 

and refractory DOC, kDOClab = 0.3 day-1 and kDOCref = 0.01 day-1, respectively (Eqs. 79, 80). 

These values correspond to half-live times of 2 days and 80 days respectively. The value for 

kDOClab is thus in agreement with Devol and Hedges (2001) who conclude that DOClab in the 

Amazon river must have a very short half-life of hours to a few days.  kDOCref also corresponds 

to the lower range of respiration rates found for Rio Solimoes of 0.2 µM h-1 (Amon and Benner, 

1996) if an average concentration of about 5 mg C L-1 is assumed (cf. Moreira-Turcq et al., 

2003). We assumed that the values for the rate constants are valid for an average Twater of 28°C 

(consistent with experiments of Amon and Benner, 1996 and the average temperature simulated 

here) and apply a temperature sensitivity factor on decomposition rates after Hanson et al. 

(2011) (Eqs. 79,80). 

 

𝑆∗,DOC𝑙𝑎𝑏,𝑖,𝑡+1 = 𝑆∗,DOC𝑙𝑎𝑏,𝑖,𝑡−𝑆∗,DOC𝑙𝑎𝑏,𝑖,𝑡 ∙
𝑘𝐷𝑂𝐶𝑙𝑎𝑏

∙ 𝑑𝑡

𝑑𝑎𝑦
∙ 1.073(𝑇𝑤𝑎𝑡𝑒𝑟,𝑖,𝑡−28) 

 

(79) 

 

𝑆∗,DOC𝑟𝑒𝑓,𝑖,𝑡+1 = 𝑆∗,DOC𝑟𝑒𝑓,𝑖,𝑡−𝑆∗,DOC𝑟𝑒𝑓,𝑖,𝑡 ∙
𝑘𝐷𝑂𝐶𝑟𝑒𝑓

∙ 𝑑𝑡

𝑑𝑎𝑦
∙ 1.073(𝑇𝑤𝑎𝑡𝑒𝑟,𝑖,𝑡−28) 

*: fast, slow, river, flood 

 

(80) 

 

 

 

𝑆𝑠𝑙𝑜𝑤,CO2,i,t+1 = 𝑆𝑠𝑙𝑜𝑤,CO2,i,t+1 + 𝑆𝑠𝑙𝑜𝑤,DOC𝑙𝑎𝑏,𝑖,𝑡 ∙
𝑘𝐷𝑂𝐶𝑙𝑎𝑏

∙ 𝑑𝑡

𝑑𝑎𝑦
+ 𝑆𝑠𝑙𝑜𝑤,DOC𝑟𝑒𝑓,𝑖,𝑡 ∙

𝑘𝐷𝑂𝐶𝑟𝑒𝑓
∙ 𝑑𝑡

𝑑𝑎𝑦
 

 

(81) 

 

𝑆𝑓𝑎𝑠𝑡,CO2,i,t+1 = 𝑆𝑓𝑎𝑠𝑡,CO2,i,t+1 + 𝑆𝑓𝑎𝑠𝑡,DOC𝑙𝑎𝑏,𝑖,𝑡 ∙
𝑘𝐷𝑂𝐶𝑙𝑎𝑏

∙ 𝑑𝑡

𝑑𝑎𝑦
+ 𝑆𝑓𝑎𝑠𝑡,DOC𝑟𝑒𝑓,𝑖,𝑡 ∙

𝑘𝐷𝑂𝐶𝑟𝑒𝑓
∙ 𝑑𝑡

𝑑𝑎𝑦

− 𝐹𝑓𝑎𝑠𝑡2𝑎𝑡𝑚,𝐶𝑂2 ,𝑖,𝑡 

 

(82) 
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𝑆𝑟𝑖𝑣𝑒𝑟,CO2,i,t+1 = 𝑆𝑟𝑖𝑣𝑒𝑟,CO2,i,t+1 + 𝑆𝑟𝑖𝑣𝑒𝑟,DOC𝑙𝑎𝑏,𝑖,𝑡 ∙
𝑘𝐷𝑂𝐶𝑙𝑎𝑏

∙ 𝑑𝑡

𝑑𝑎𝑦
+ 𝑆𝑟𝑖𝑣𝑒𝑟,DOC𝑟𝑒𝑓,𝑖,𝑡 ∙

𝑘𝐷𝑂𝐶𝑟𝑒𝑓
∙ 𝑑𝑡

𝑑𝑎𝑦

− 𝐹𝑟𝑖𝑣𝑒𝑟2𝑎𝑡𝑚,𝐶𝑂2,𝑖,𝑡 + ∑ (𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡)
13

𝑣=1
∙

𝑑𝑡

𝑑𝑎𝑦

∙
%𝑓𝑙𝑜𝑜𝑑𝑟𝑖𝑣𝑒𝑟,𝑖,𝑡 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙,𝑖

%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥

 

 

(83) 

 

 

 

 

 

𝑆𝑓𝑙𝑜𝑜𝑑,CO2,i,t+1 = 𝑆𝑓𝑙𝑜𝑜𝑠,CO2,i,t+1 + 𝑆𝑓𝑙𝑜𝑜𝑑,DOC𝑙𝑎𝑏,𝑖,𝑡 ∙
𝑘𝐷𝑂𝐶𝑙𝑎𝑏

∙ 𝑑𝑡

𝑑𝑎𝑦
+ 𝑆𝑓𝑙𝑜𝑜𝑑,DOC𝑟𝑒𝑓,𝑖,𝑡 ∙

𝑘𝐷𝑂𝐶𝑟𝑒𝑓
∙ 𝑑𝑡

𝑑𝑎𝑦

− 𝐹𝑓𝑙𝑜𝑜𝑑2𝑎𝑡𝑚,𝐶𝑂2,𝑖,𝑡 + ∑ (𝐹𝑠𝑜𝑖𝑙2𝑓𝑙𝑜𝑜𝑑,𝐶𝑂2,𝑔𝑟𝑖𝑑 𝑥,𝑣,𝑡)
13

𝑣=1
∙

𝑑𝑡

𝑑𝑎𝑦

∙
%𝑓𝑙𝑜𝑜𝑑𝑖,𝑡 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙,𝑖

%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥,𝑡 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙,𝑔𝑟𝑖𝑑 𝑥

 

 

(84) 

 

 

 

 

 

 

At each 6-min time-step, the CO2 produced from the decomposition of DOC is added to the 

relevant reservoirs (Eqs. 81-84). For Sfast, Sriver, and Sflood, the amount of evading CO2 is 

subtracted from the CO2 stocks (Eqs. 82-84). For Sriver and Sflood, the inputs of CO2 from the 

decomposition of inundated SOC and litter are added to these reservoirs, based on the relative 

contribution of swollen rivers (%𝑓𝑙𝑜𝑜𝑑𝑟𝑖𝑣𝑒𝑟) and floodplains (%flood) on the total fraction of 

inundated soils (%𝑓𝑙𝑜𝑜𝑑𝑡𝑜𝑡𝑎𝑙) (Eqs. 83-84). 
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Abstract 

The importance of northern peatlands in the global carbon cycle has been recognized, 

especially for long-term changes. Yet, the complex interactions between climate and peatland 

hydrology, carbon storage and area dynamics make it challenging to represent these systems in 

land surface models. This study describes how peatland are included as an independent sub-

grid hydrological soil unit (HSU) into the ORCHIDEE-MICT land surface model. The peatland 

soil column in this tile is characterized by multi-layered vertical water and carbon transport, 

and peat-specific hydrological properties. The cost-efficient version of TOPMODEL and the 

scheme of peatland initiation and development from the DYPTOP model, are implemented and 

adjusted, to simulate spatial and temporal dynamics of peatland. The model is tested across a 

range of northern peatland sites and for gridded simulations over the Northern Hemisphere 

(>30 °N). Simulated northern peatland area (3.9 million km2), peat carbon stock (463 PgC) and 

peat depth are generally consistent with observed estimates of peatland area (3.4 – 4.0 million 

km2), peat carbon (270 – 540 PgC) and data compilations of peat core depths. Our results show 

that both net primary production (NPP) and heterotrophic respiration (HR) of northern 

peatlands increased over the past century in response to CO2 and climate change. NPP increased 

more rapidly than HR, and thus net ecosystem production (NEP) exhibited a positive trend, 

contributing a cumulative carbon storage of 11.13 Pg C since 1901, most of it being realized 

after the 1950s. 


